Corvini, Philippe

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Corvini
Vorname
Philippe
Name
Corvini, Philippe

Suchergebnisse

Gerade angezeigt 1 - 5 von 5
Vorschaubild nicht verfügbar
Publikation

Biodegradation of sulfamethoxazole by a bacterial consortium of Achromobacter denitrificans PR1 and Leucobacter sp. GP

2018-12, Reis, Ana C., Cvancarova Småstuen, M., Liu, Ying, Lenz, Markus, Hettich, Timm, Kolvenbach, Boris, Corvini, Philippe, Nunes, Olga C.

In the last decade, biological degradation and mineralization of antibiotics have been increasingly reported feats of environmental bacteria. The most extensively described example is that of sulfonamides that can be degraded by several members of Actinobacteria and Proteobacteria. Previously, we reported sulfamethoxazole (SMX) degradation and partial mineralization by Achromobacter denitrificans strain PR1, isolated from activated sludge. However, further studies revealed an apparent instability of this metabolic trait in this strain. Here, we investigated this instability and describe the finding of a low-abundance and slow-growing actinobacterium, thriving only in co-culture with strain PR1. This organism, named GP, shared highest 16S rRNA gene sequence similarity (94.6–96.9%) with the type strains of validly described species of the genus Leucobacter. This microbial consortium was found to harbor a homolog to the sulfonamide monooxygenase gene (sadA) also found in other sulfonamide-degrading bacteria. This gene is overexpressed in the presence of the antibiotic, and evidence suggests that it codes for a group D flavin monooxygenase responsible for the ipso-hydroxylation of SMX. Additional side reactions were also detected comprising an NIH shift and a Baeyer–Villiger rearrangement, which indicate an inefficient biological transformation of these antibiotics in the environment. This work contributes to further our knowledge in the degradation of this ubiquitous micropollutant by environmental bacteria.

Vorschaubild nicht verfügbar
Publikation

Isolation of two Ochrobactrum sp. strains capable of degrading the nootropic drug—Piracetam

2018-07, Woźniak-Karczewska, Marta, Cvancarová, Monika, Chrzanowski, Łukasz, Corvini, Philippe, Cichocka, Danuta

Piracetam (2-oxo-1-pyrrolidine acetamide) is a popular cognitive enhancer, which has recently been detected in waste and drinking water. Nootropic drugs are designed to affect human metabolism and act on the nervous system, but their environmental effects have yet to be the subject of detailed studies. In this report, we present the efficient biodegradation of the cognitive enhancer, piracetam. Two bacterial strains capable of using this compound as the sole carbon source were isolated and later identified as Ochrobactrum anthropi strain MW6 and Ochrobactrum intermedium strain MW7. The compound's mineralization and the cleavage of the heterocyclic ring were shown in the experiments with 14C-labeled piracetam. This is also the first report of a pharmaceutical's degradation by the Ochrobactrum genus. This study presents model microorganisms that can be used in further investigation of piracetam's degradation pathways as well as enzymes and genes involved in the process.

Vorschaubild nicht verfügbar
Publikation

Bio- and photodegradation of fungicides in agro-industrial wastewater

2018-11, Cvancarova Småstuen, Milada, Svojitka, Jan, Corvini, Philippe

Vorschaubild nicht verfügbar
Publikation

Biotransformation of ritalinic acid by laccase in the presence of mediator TEMPO

2018-07, Kobakhidze, Aza, Elisashvili, Vladimir, Corvini, Philippe, Cvancarova Småstuen, M.

Methylphenidate is widely used as a medication for the treatment of attention deficit hyperactivity disorder (ADHD) in children. Less than 1% of methylphenidate is excreted unchanged in urine, while 80% of an oral dose is excreted as ritalinic acid (which is reportedly poorly degradable). This study aims to investigate the biotransformation of ritalinic acid by free and immobilized enzymes. The influence of various laccase mediators on biotransformation efficiency has been tested. Formation of the main transformation products has been monitored and their potential structures suggested. The effective transformation of ritalinic acid was observed only in the presence of 2,2,6,6-tetramethylpiperidine 1-oxyl mediator (TEMPO). The most effective enzyme was the laccase of T. versicolor 159. The main transformation product was an N-methyl derivative of ritalinic acid. Ritalinic acid was also reduced to aldehyde and alcohol, and a broad spectrum of intermediate complexes with oxoammonium ion of TEMPO were detected. This is the first time the biotransformation of ritalinic acid has been investigated in detail.

Vorschaubild nicht verfügbar
Publikation

Bacterial isolates degrading ritalinic acid—human metabolite of neuro enhancer methylphenidate

2018-07, Woźniak-Karczewska, Marta, Cvancarová, Monika, Chrzanowski, Łukasz, Corvini, Philippe, Cichocka, Danuta

The consumption of nootropic drugs has increased tremendously in the last decade, though the studies on their environmental fate are still scarce. Nootropics are bioactive compounds designed to alter human's physiology therefore the adverse effects towards wildlife can be expected. In order to understand their environmental impact, the knowledge on their transformation pathways is necessary. Methylphenidate belongs to the most prescribed neuro-enhancers and is among the most favored smart drugs used in non-medical situations. It is metabolized in human liver and excreted as ritalinic acid. Here, we showed for the first time that ritalinic acid can be biodegraded and used as a sole carbon and nitrogen source by various microbial strains originating from different environmental samples. Five axenic strains were isolated and identified as: Arthrobacter sp. strain MW1, MW2 and MW3, Phycicoccus sp. strain MW4 and Nocardioides sp. strain MW5. Our research provides the first insight into the metabolism of ritalinic acid and suggests that it may differ depending on the strain and growth conditions, especially on availability of nitrogen. The isolates obtained in this study can serve as model organisms in further studies on the catabolism of ritalinic acid and methylphenidate but potentially also other compounds with similar structures. Our findings have important implication for the sewage epidemiology. We demonstrated that ritalinic acid is subject to quick and efficient biodegradation thus its use as a stable biomarker should be reconsidered.