Lenz, Markus

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Lenz
Vorname
Markus
Name
Lenz, Markus

Suchergebnisse

Gerade angezeigt 1 - 2 von 2
  • Publikation
    Rapid metal mobilisation through litter, water and bioweathering as the legacy of historical copper smelting
    (Elsevier, 11/2019) Potysz, Anna; Hedwig, Sebastian; Lenz, Markus [in: Journal of Geochemical Exploration]
    Though activities have long ceased, historical mining sites may continue to represent a risk to the environment and human health through long-time leaching processes. This study was undertaken to assess the immediate environmental risk posed by historic metallurgical slags upon contact with litter (Fagus sylvatica leaves, Picea abies needles) and stream water. Further, the contribution of direct slag phase bioweathering was investigated using a soil solution favouring microbial growth (biostimulation) versus aqueous sterile soil extracts. The slags' exposure to Acidithiobacillus thiooxidans mimicked the extremely acidic conditions that will eventually develop under long-term weathering of the sulfidic phases present in the slags (e.g. bornite, chalcopyrite). The risk of metal mobilisation was assessed by means of both bio-chemical leaching experiments (quantification by triple quadrupole inductively coupled plasma mass spectrometry QQQ-ICP-MS) as well as phytotoxicity (Zea mays germination; direct contact and soil pot experiments). Potential metal donor slag phases were identified by scanning electron microscopy (SEM-EDS). It was shown that slags would be categorised as hazardous waste when remaining in contact with the studied weathering solutions. Lead was the most mobile element leaching from slags (up to 86%) and exceeded the legal limits for classification as a non-hazardous waste for all executed treatments. Biostimulation had little effect on Cu leaching (up to 2.6% versus 2.5% for the sterile soil extract, respectively). Litter derived solutions, in contrast, enhanced glass dissolution instead of heavy metal bearing phases. Metal leaching was rapid, raising concerns for peak loads on slag exposure to changing biogeochemical conditions. Extremely acidic conditions and bioleaching by A. thiooxidans were shown to result in metal-enriched leachates (up to 92% of Zn) as well as the lowest germination rate in Zea mays, implying a long term risk by sulphide bioweathering. Five week pot experiments with a soil/slag mixture and Zea mays revealed poor growth in all studied conditions. However, a bacterially derived citric acid was found to improve root and shoot development, possibly due to alleviating the toxic effect of some elements. Due to the observed phytotoxicity, we conclude that the phytoremediation/rehabilitation of slag impacted soils may be limited. The search for a metal tolerant plant species that would be efficient in terms of biomass production and metals uptake is a perspective of this work.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Layer-by-layer membrane modification allows scandium recovery by nanofiltration
    (Royal Society of Chemistry, 07/2019) Remmen, Kirsten; Lenz, Markus; Hedwig, Sebastian; Wintgens, Thomas [in: Environmental Science. Water, Research & Technology]
    Aluminium scandium (Sc) alloys are stronger, more corrosion resistant and more heat tolerant than classical aluminium alloys and allow for 3D printing. In particular, the aerospace industry benefits from better fuel efficiency due to lighter materials as well as the advantages of additive manufacturing. However, Sc is currently not available in sufficient quantities and has recently been identified as a raw material critical to the economy. Due to the recentness of the demand, technologies for recovery of Sc from secondary sources are in their infancy. In this study, Sc recovery from titanium dioxide pigment production waste by nanofiltration was investigated. Custom-made layer-by-layer (LbL) modified membranes were optimized with regards to their elemental retention (i.e., selectivity towards Sc) as well as their acid resistance. In model solutions, the optimized membrane retained up to 64% ± 4% Sc, removing the major impurity, iron (Fe), efficiently (12% ± 7% retention) while achieving high flux [32 L m−2 h−1] at a low transmembrane pressure of 5 bar. Acid resistance was shown down to a pH of 0.1, which could be even further increased (up to ≤3 M HCl) by adding more bi-layers and changing the coating conditions. In real wastes, the optimized LbL membrane showed higher Sc retention (60% vs. 50%) compared to a commercial acid resistant membrane, while achieving considerably higher fluxes [27 L m−2 h−1 versus 1 L m−2 h−1, respectively at 5 bar]. It was possible to operate filtration at low transmembrane pressure with up to 70% permeate recovery and flux that was still high [∼10 L m−2 h−1]. In a nutshell, titanium dioxide pigment wastes contained sufficient amounts to satisfy the growing demand for Sc and can be exploited to their full extent by LbL nanofiltration due to the proven advantages of acid stability, Sc retention and selectivity and high achievable fluxes at low pressures.
    01A - Beitrag in wissenschaftlicher Zeitschrift