Lenz, Markus

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Lenz
Vorname
Markus
Name
Lenz, Markus

Suchergebnisse

Gerade angezeigt 1 - 2 von 2
Vorschaubild nicht verfügbar
Publikation

Effects of barium on the pathways of anaerobic digestion

2019, Wyman, Valentina, Lenz, Markus, Serrano, Antonio

The sufficient presence of trace elements (TE) is essential for anaerobic digestion. Barium (Ba) is considered a non-essential trace element that can be collaterally added to digesters as part of low-cost trace element sources or because of its presence in some feedstocks, such as crude glycerol. In the present study, the impact of Ba supplementation (2–2000 mg/L) on each stage of the anaerobic digestion (AD) process was evaluated using pure substrates (i.e., cellulose, glucose, a mixture of volatile fatty acids, sodium acetate and hydrogen) as well as a complex substrate (i.e., dried green fodder). Hydrolytic activity was affected at dosages higher than 200 mg Ba/L, whereas cellulose degradation was completely inhibited at 2000 mg Ba/L. The negative effects of the addition of Ba to methane production were observed only in the hydrolytic activity, and no effects were detected at any barium dosage in the subsequent anaerobic steps. Because Ba does not have a reported role as a cofactor of enzymes, this response could have been due to a direct inhibitory effect, a variation in the bioavailability of other trace elements, or even the availability of CO2/SO4 through precipitation as Ba-carbonates and sulphates. The results showed that the addition of Ba modified the chemical equilibrium of the studied system by varying the soluble concentration of some TEs and therefore their bioavailability. The highest variation was detected in the soluble concentration of zinc, which increased as the amount of Ba increased. Although little research has shown that Ba has some utility in anaerobic processes, its addition must be carefully monitored to avoid an undesirable modification of the chemical equilibrium in the system.

Vorschaubild nicht verfügbar
Publikation

Understanding selenium biogeochemistry in engineered ecosystems: Transformation and analytical methods

2017, Jain, Rohan, van Hullebusch, Eric D., Lenz, Markus, Farges, François, van Hullebusch, Eric D.

Selenium is used extensively in many industries, and it is necessary for human nutrition. On the other hand, it is also toxic at slightly elevated concentrations. With the advent of industrialisation, selenium concentrations in the environment due to anthropogenic activities have increased. Treatment of selenium-laden wastewaters and bioremediation are of increasing importance for counteracting contamination. Developing an effective treatment process requires the identification of all the selenium chemical species and their concentrations in engineered settings. This chapter collates the available techniques for identifying and quantifying various selenium species in gas, liquid, and solid phases, including X-ray absorption spectroscopy, electron microscopy, and liquid/gas chromatography. This chapter also throws light on isotopic fractionation and sequential extraction methods used to study the behaviour of selenium. Prior to the discussion of analytical methods, this chapter discusses selenium mineralogy and biochemistry. Finally, the chapter concludes by discussing potential future analytical techniques that will further improve our understanding of selenium biogeochemistry in engineered bioprocesses.