Hengevoss, Dirk
Lade...
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Hengevoss
Vorname
Dirk
Name
Hengevoss, Dirk
12 Ergebnisse
Suchergebnisse
Gerade angezeigt 1 - 10 von 12
- PublikationCircularity and environmental sustainability of organic and printed electronics(Jenny Stanford Publishing, 2024) Le Blévennec, Kévin; Hengevoss, Dirk; Zimmermann, Yannick-Serge; Brun, Nadja; Hugi, Christoph; Lenz, Markus; Corvini, Philippe; Fent, Karl; Nisato, Giovanni; Lupo, Donald; Rudolf, Simone [in: Organic and printed electronics. Fundamentals and applications]In this chapter, the possible role and impact of organic and printed electronics (OPE) in a transition toward a circular economy and more sustainable society will be discussed. The learning targets are twofold: first, understanding main environmental issues associated with the emerging field of OPE, and second, identifying, through a systemic perspective, the enabling potential of these technologies.04A - Beitrag Sammelband
- PublikationLife cycle assessment of a novel production route for scandium recovery from bauxite residues(Elsevier, 2024) Hengevoss, Dirk; Misev, Victor; Feigl, Viktória; Fekete-Kertész, Ildikó; Molnár, Mónika; Balomenos, Efthymios; Davris, Panagiotis; Hugi, Christoph; Lenz, Markus [in: Cleaner Waste Systems]Scandium (Sc) has various technological applications, but the concentrations of Sc in ores are low. Both, the mining of low concentrated Sc and the production of industrial-grade Sc are a heavy burden on the environment. Bauxite residue (BR) from alumina production represents one of the major sources of Sc in Europe (Ochsenkühn-Petropulu et al., 1994). The goal of this study is to assess the environmental impacts from cradle to gate of a novel production route developed in the Scandium Aluminium Europe project (SCALE) to extract Sc at concentrations <100 ppm from BR, to concentrate and upgrade it to pure ScF3 and Sc2O3 and ultimately to refine it to an aluminium scandium master alloy with 2 % Sc mass fraction (AlSc2 %). Results show that the global warming potential (GWP), measured in CO2-eq per kg Sc2O3, generated with the novel route is about half the GWP of the state-of-the-art Sc2O3 production from rare earth tailings when applying equal allocation principles. The initial process step to dissolve BR and extract Sc consumes elevated amounts of acid and energy and is responsible for at least 80 % of the route’s total environmental impact. The amount of the generated filter cake (FC) is equal to the amount of the BR input and is a potential resource for cement clinker production. The ecotoxicological study indicates that both FC and BR are slightly ecotoxic.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationImplementation of co-processing of waste in cement kilns for Ukraine(Igor Sikorsky Kyiv Polytechnic Institute, 2021) Kleshchov, Anton Yosypovych; Hengevoss, Dirk; Hugi, Christoph; Mutz, Dieter; Terentiev, Oleh Markovych; Shevchuk, Nataliia Anatoliivna05 - Forschungs- oder Arbeitsbericht
- PublikationUmweltnutzen eines Hausmanagers (Custom Energy Manager) im progressiven Energieszenario 2035 der Fachhochschule Nordwestschweiz(2019) Hengevoss, Dirk; Hugi, Christoph; Kunz, Dominique [in: FHNW - Fachhochschule Nordwestschweiz - Hochschule für Life Sciences]04A - Beitrag Sammelband
- PublikationEnvironmental potential analysis of co-processing waste in cement kilns(Kharkiv State Academy of Physical Culture, 2019) Kleshchov, Anton; Hengevoss, Dirk; Hugi, Christoph [in: Eastern-European Journal of Enterprise Technologies]01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationSelective CRM recovery from acidic solutions by nanofiltration/liquid-liquid extraction(05/2017) Hengevoss, Dirk; Hugi, Christoph; Wintgens, Thomas; Lenz, Markus; Schäfer, Roman06 - Präsentation
- PublikationWaste-to-Energy Options in Municipal Solid Waste Management A Guide for Decision Makers in Developing and Emerging Countries(Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ), 2017) Mutz, Dieter; Hengevoss, Dirk; Hugi, Christoph; Gross, Thomas05 - Forschungs- oder Arbeitsbericht
- PublikationOpciones para el aprovechamiento energético de residuos en la gestión de residuos sólidos urbanos. Guía para los responsables de la toma de decisiones en países en vías de desarrollo y emergentes(Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, 2017) Mutz, Dieter; Hengevoss, Dirk; Hugi, Christoph; Gross, Thomas05 - Forschungs- oder Arbeitsbericht
- PublikationEnvironmental aspects of printable and organic electronics (POE)(Pan Stanford Publishing, 04/2016) Hengevoss, Dirk; Zimmermann, Yannick; Brun, Nadja; Hugi, Christoph; Lenz, Markus; Corvini, Philippe; Fent, Karl; Nisato, Giovanni; Lupo, Donald; Ganz, Simone [in: Organic and Printed Electronics: Fundamentals and Applications]04A - Beitrag Sammelband
- PublikationLife Cycle Assessment and eco-efficiency of prospective, flexible, tandem organic photovoltaic module(Elsevier, 2016) Hengevoss, Dirk; Baumgartner, Corinne; Hugi, Christoph; Nisato, Giovanni [in: Solar Energy]Organic photovoltaic technology has reached a sufficient maturity to enable commercially viable products for integration into buildings with power conversion efficiencies up to about 5%, for example, using a roll-to-roll (R2R) processing of single bulk heterojunction devices technology. This paper reports on a Life Cycle Assessment (LCA) and eco-efficiency analysis of prospective tandem organic photovoltaic (OPV) modules which have been manufactured to the most part in pilot environments. To realistically model the LCA and eco-efficiency a power conversion efficiency of both 10% and a more modest 8% were used with lifespan scenarios of 15 and 20 years. The tandem OPV modules modelled in this study have: a cell stack consisting of new advanced materials such as nano-sized zinc oxide, nano-sized silver, and semiconductor polymers; a light management structure; and new flexible PET based encapsulation with organic and inorganic barriers. This tandem technology was modelled assuming an industrialized production based on real and estimated resource consumption and pollution data from an existing roll-to-roll pilot OPV plant and from material suppliers together with projected costs. Established multi-silicon (multi-Si) and cadmium-telluride (CdTe) photovoltaics were taken to benchmark the environmental impacts in production and the expected levelized costs of electricity. The results of the modelling show that the production of 1 m2 tandem OPV module represents only approximately 3–10% of the impacts of 1 m2 of the benchmark multi-Si or CdTe modules when the global warming potential (GWP), cumulative energy demand (CED), eco-toxicity, and metal depletion environmental impacts are considered. The results also show the energy payback time of a tandem OPV at facade is only 18–55% of that of the benchmarks, and the GWP is just 12–60% of that of the benchmarks. An eco-efficiency comparison indicates that, for applications where photovoltaic modules cannot be optimally oriented towards the sun, a flexible tandem OPV might be a superior alternative to multi-Si and CdTe modules.01A - Beitrag in wissenschaftlicher Zeitschrift