Nebiker, Stephan

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Nebiker
Vorname
Stephan
Name
Nebiker, Stephan

Suchergebnisse

Gerade angezeigt 1 - 5 von 5
  • Publikation
    AI-based 3D detection of parked vehicles on a mobile mapping platform using edge computing
    (2022) Meyer, Jonas; Blaser, Stefan; Nebiker, Stephan [in: The international archives of the photogrammetry, remote sensing and spatial information sciences]
    In this paper we present an edge-based hardware and software framework for the 3D detection and mapping of parked vehicles on a mobile mapping platform for the use case of on-street parking statistics. First, we investigate different point cloud-based 3D object detection methods on our extremely dense and noisy depth maps obtained from low-cost RGB-D sensors to find a suitable object detector and determine the optimal preparation of our data. We then retrain the chosen object detector to detect all types of vehicles, rather than standard cars only. Finally, we design and develop a software framework integrating the newly trained object detector. By repeating the parking statistics of our previous work (Nebiker et al., 2021), our software is tested regarding the detection accuracy. With our edge-based framework, we achieve a precision and recall of 100% and 98% respectively on any parking configuration and vehicle type, outperforming all other known work on on-street parking statistics. Furthermore, our software is evaluated in terms of processing speed and volume of generated data. While the processing speed reaches only 1.9 frames per second due to limited computing resources, the amount of data generated is just 0.25 KB per frame.
    04B - Beitrag Konferenzschrift
  • Publikation
    Open urban and forest datasets from a high-performance mobile mapping backpack. A contribution for advancing the creation of digital city twins
    (International Society of Photogrammetry and Remote Sensing, 2021) Blaser, Stefan; Meyer, Jonas; Nebiker, Stephan [in: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences]
    With this contribution, we describe and publish two high-quality street-level datasets, captured with a portable high-performance Mobile Mapping System (MMS). The datasets will be freely available for scientific use. Both datasets, from a city centre and a forest represent area-wide street-level reality captures which can be used e.g. for establishing cloud-based frameworks for infrastructure management as well as for smart city and forestry applications. The quality of these data sets has been thoroughly evaluated and demonstrated. For example, georeferencing accuracies in the centimetre range using these datasets in combination with image-based georeferencing have been achieved. Both high-quality multi sensor system street-level datasets are suitable for evaluating and improving methods for multiple tasks related to high-precision 3D reality capture and the creation of digital twins. Potential applications range from localization and georeferencing, dense image matching and 3D reconstruction to combined methods such as simultaneous localization and mapping and structure-from-motion as well as classification and scene interpretation. Our dataset is available online at: https://www.fhnw.ch/habg/bimage-datasets
    04B - Beitrag Konferenzschrift
  • Publikation
    Outdoor mobile mapping and AI-based 3D object detection with low-cost RGB-D cameras. The use case of on-street parking statistics
    (MDPI, 2021) Nebiker, Stephan; Meyer, Jonas; Blaser, Stefan; Ammann, Manuela; Rhyner, Severin Eric [in: Remote sensing]
    A successful application of low-cost 3D cameras in combination with artificial intelligence (AI)-based 3D object detection algorithms to outdoor mobile mapping would offer great potential for numerous mapping, asset inventory, and change detection tasks in the context of smart cities. This paper presents a mobile mapping system mounted on an electric tricycle and a procedure for creating on-street parking statistics, which allow government agencies and policy makers to verify and adjust parking policies in different city districts. Our method combines georeferenced red-green-blue-depth (RGB-D) imagery from two low-cost 3D cameras with state-of-the-art 3D object detection algorithms for extracting and mapping parked vehicles. Our investigations demonstrate the suitability of the latest generation of low-cost 3D cameras for real-world outdoor applications with respect to supported ranges, depth measurement accuracy, and robustness under varying lighting conditions. In an evaluation of suitable algorithms for detecting vehicles in the noisy and often incomplete 3D point clouds from RGB-D cameras, the 3D object detection network PointRCNN, which extends region-based convolutional neural networks (R-CNNs) to 3D point clouds, clearly outperformed all other candidates. The results of a mapping mission with 313 parking spaces show that our method is capable of reliably detecting parked cars with a precision of 100% and a recall of 97%. It can be applied to unslotted and slotted parking and different parking types including parallel, perpendicular, and angle parking.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Implementation and first evaluation of an indoor mapping application using smartphones and frameworks
    (2019) Hasler, Oliver; Blaser, Stefan; Nebiker, Stephan [in: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences]
    In this paper, we present the implementation of a smartphone-based indoor mobile mapping application based on an augmented reality (AR) framework and a subsequent performance evaluation in demanding indoor environments. The implementation runs on Android and iOS devices and demonstrates the great potential of smartphone-based 3D mobile mapping. The application includes several functionalities such as device tracking, coordinate, and distance measuring as well as capturing georeferenced imagery. We evaluate our prototype system by comparing measured points from the tracked device with ground control points in an indoor environment with two different campaigns. The first campaign consists of an open, one-way trajectory whereas the second campaign incorporates a loop closure. In the second campaign, the underlying AR framework successfully recognized the start location and correctly repositioned the device. Our results show that the absolute 3D accuracy of device tracking with a standard smartphone is around 1% of the travelled distance and that the local 3D accuracy reaches sub-decimetre level.
    04B - Beitrag Konferenzschrift
  • Publikation
    Development of a portable high performance mobile mapping system using the robot operating system
    (Copernicus, 2018) Blaser, Stefan; Cavegn, Stefan; Nebiker, Stephan [in: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences]
    The rapid progression in digitalization in the construction industry and in facility management creates an enormous demand for the efficient and accurate reality capturing of indoor spaces. Cloud-based services based on georeferenced metric 3D imagery are already extensively used for infrastructure management in outdoor environments. The goal of our research is to enable such services for indoor applications as well. For this purpose, we designed a portable mobile mapping research platform with a strong focus on acquiring accurate 3D imagery. Our system consists of a multi-head panorama camera in combination with two multi-profile LiDAR scanners and a MEMS-based industrial grade IMU for LiDAR-based online and offline SLAM. Our modular implementation based on the Robot Operating System enables rapid adaptations of the sensor configuration and the acquisition software. The developed workflow provides for completely GNSS-independent data acquisition and camera pose estimation using LiDAR-based SLAM. Furthermore, we apply a novel image-based georeferencing approach for further improving camera poses. First performance evaluations show an improvement from LiDAR-based SLAM to image-based georeferencing by an order of magnitude: from 10–13 cm to 1.3–1.8 cm in absolute 3D point accuracy and from 8–12 cm to sub-centimeter in relative 3D point accuracy.
    01A - Beitrag in wissenschaftlicher Zeitschrift