Riesen, Kaspar
Lade...
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Riesen
Vorname
Kaspar
Name
Riesen, Kaspar
88 Ergebnisse
Suchergebnisse
Gerade angezeigt 1 - 10 von 88
- PublikationNatural language-based user guidance for knowledge graph exploration: a user study(SciTePress, 2021) Witschel, Hans Friedrich; Riesen, Kaspar; Grether, Loris; Cucchiara, Rita; Fred, Ana; Filipe, Joaquim [in: Proceedings of the 13th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management]Large knowledge graphs hold the promise of helping knowledge workers in their tasks by answering simple and complex questions in specialised domains. However, searching and exploring knowledge graphs in current practice still requires knowledge of certain query languages such as SPARQL or Cypher, which many untrained end users do not possess. Approaches for more user-friendly exploration have been proposed and range from natural language querying over visual cues up to query-by-example mechanisms, often enhanced with recommendation mechanisms offering guidance. We observe, however, a lack of user studies indicating which of these approaches lead to a better user experience and optimal exploration outcomes. In this work, we make a step towards closing this gap by conducting a qualitative user study with a system that relies on formulating queries in natural language and providing answers in the form of subgraph visualisations. Our system is able to offer guidance via query recommendations based on a current context. The user study evaluates the impact of this guidance in terms of both efficiency and effectiveness (recall) of user sessions. We find that both aspects are improved, especially since query recommendations provide inspiration, leading to a larger number of insights discovered in roughly the same time.04B - Beitrag Konferenzschrift
- PublikationFilters for graph-based keyword spotting in historical handwritten documents(Elsevier, 2020) Stauffer, Michael; Fischer, Andreas; Riesen, Kaspar [in: Pattern Recognition Letters]01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationMatching of matching-graphs - a novel approach for graph classification(IEEE, 2020) Fuchs, Mathias; Riesen, Kaspar [in: 2020 25th International Conference on Pattern Recognition (ICPR)]Due to fast developments in data acquisition, we observe rapidly increasing amounts of data available in diverse areas. Simultaneously, we observe that in many applications the underlying data is inherently complex, making graphs a very useful and adequate data structure for formal representation. A large amount of graph based methods for pattern recognition have been proposed. Many of these methods actually rely on graph matching. In the present paper a novel encoding of graph matching information is proposed. The idea of this encoding is to formalize the stable cores of specific classes by means of graphs. In an empirical evaluation we show that it can be highly beneficial to focus on these stable parts of graphs during graph classification.04B - Beitrag Konferenzschrift
- PublikationApproximate graph edit distance in quadratic time(IEEE, 2020) Riesen, Kaspar; Ferrer, Miquel; Bunke, Horst [in: IEEE/ACM Transactions on Computational Biology and Bioinformatics]Graph edit distance is one of the most flexible and general graph matching models available. The major drawback of graph edit distance, however, is its computational complexity that restricts its applicability to graphs of rather small size. Recently, the authors of the present paper introduced a general approximation framework for the graph edit distance problem. The basic idea of this specific algorithm is to first compute an optimal assignment of independent local graph structures (including substitutions, deletions, and insertions of nodes and edges). This optimal assignment is complete and consistent with respect to the involved nodes of both graphs and can thus be used to instantly derive an admissible (yet suboptimal) solution for the original graph edit distance problem in Ο(n³) time. For large scale graphs or graph sets, however, the cubic time complexity may still be too high. Therefore, we propose to use suboptimal algorithms with quadratic rather than cubic time for solving the basic assignment problem. In particular, the present paper introduces five different greedy assignment algorithms in the context of graph edit distance approximation. In an experimental evaluation, we show that these methods have great potential for further speeding up the computation of graph edit distance while the approximated distances remain sufficiently accurate for graph based pattern classification.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationKvGR: A graph-based interface for explorative sequential question answering on heterogeneous information sources(Springer, 2020) Witschel, Hans Friedrich; Riesen, Kaspar; Grether, Loris; Jose, Joemon M.; Yilmaz, Emine; Magalhães, João; Castells, Pablo; Ferro, Nicola; Silva, Mário J.; Martins, Flávio [in: Advances in Information Retrieval. 42nd European Conference on IR Research, ECIR 2020, Lisbon, Portugal, April 14-17, 2020. Proceedings]Exploring a knowledge base is often an iterative process: initially vague information needs are refined by interaction. We propose a novel approach for such interaction that supports sequential question answering (SQA) on knowledge graphs. As opposed to previous work, we focus on exploratory settings, which we support with a visual representation of graph structures, helping users to better understand relationships. In addition, our approach keeps track of context – an important challenge in SQA – by allowing users to make their focus explicit via subgraph selection. Our results show that the interaction principle is either understood immediately or picked up very quickly – and that the possibility of exploring the information space iteratively is appreciated.04B - Beitrag Konferenzschrift
- PublikationOn the impact of using utilities rather than costs for graph matching(Springer, 09.11.2019) Riesen, Kaspar; Bunke, Horst; Fischer, Andreas [in: Neural Processing Letters]The concept of graph edit distance constitutes one of the most flexible graph matching paradigms available. The major drawback of graph edit distance, viz. the exponential time complexity, has been recently overcome by means of a reformulation of the edit distance problem to a linear sum assignment problem. However, the substantial speed up of the matching is also accompanied by an approximation error on the distances. Major contribution of this paper is the introduction of a transformation process in order to convert the underlying cost model into a utility model. The benefit of this transformation is that it enables the integration of additional information in the assignment process.We empirically confirm the positive effects of this transformation on five benchmark graph sets with respect to the accuracy and run time of a distance based classifier.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationGraph embedding for offline handwritten signature verification(2019) Stauffer, Michael; Maergner, Paul; Fischer, Andreas; Riesen, Kaspar [in: ICBEA 2019. Proceedings of 2019 3rd International Conference on Biometric Engineering and Applications (ICBEA 2019). Stockholm, Sweden, May 29-31, 2019]Due to the high availability and applicability, handwritten signatures are an eminent biometric authentication measure in our life. To mitigate the risk of a potential misuse, automatic signature verification tries to distinguish between genuine and forged signatures. Most of the available signature verification approaches make use of vectorial rather than graph-based representations of the handwriting. This is rather surprising as graphs offer some inherent advantages. Graphs are, for instance, able to directly adapt their size and structure to the size and complexity of the respective handwritten entities. Moreover, several fast graph matching algorithms have been proposed recently that allow to employ graphs also in domains with large amounts of data. The present paper proposes to use different graph embedding approaches in conjunction with a recent graph-based signature verification framework. That is, signature graphs are not directly matched with each other, but first compared with a set of predefined prototype graphs, in order to obtain a dissimilarity representation. In an experimental evaluation, we employ the proposed method on two widely used benchmark datasets. On both datasets, we empirically confirm that the learning-free graph embedding outperforms state-of-the-art methods with respect to both accuracy and runtime.04B - Beitrag Konferenzschrift
- PublikationOnline signature verification based on string edit distance(Springer, 2019) Riesen, Kaspar; Schmidt, Roman [in: International Journal on Document Analysis and Recognition]Handwritten signatures are widely used and well-accepted biometrics for personal authentication. The accuracy of signature verification systems has significantly improved in the last decade, making it possible to rely on machines in particular cases or to support human experts. Yet, based on only few genuine references, signature verification is still a challenging task. The present paper provides a comprehensive comparison of two prominent string matching algorithms that can be readily used for signature verification. Moreover, it evaluates a recent cost model for string matching which turns out to be particularly well suited for the task of signature verification. On three benchmarking data sets, we show that this model outperforms the two standard models for string matching with statistical significance.01A - Beitrag in wissenschaftlicher Zeitschrift
- PublikationOffline signature verification using structural dynamic time warping(IEEE, 2019) Stauffer, Michael; Maergner, Paul; Fischer, Andreas; Ingold, Rolf; Riesen, Kaspar [in: ICDAR 2019. The 15th IAPR International Conference on Document Analysis and Recognition. 20-25 September 2019, Sydney, Australia. Proceedings]In recent years, different approaches for handwriting recognition that are based on graph representations have been proposed (e.g. graph-based keyword spotting or signature verification). This trend is mostly due to the availability of novel fast graph matching algorithms, as well as the inherent flexibility and expressivity of graph data structures when compared to vectorial representations. That is, graphs are able to directly adapt their size and structure to the size and complexity of the respective handwritten entities. However, the vast majority of the proposed approaches match the graphs from a global perspective only. In the present paper, we propose to match the underlying graphs from different local perspectives and combine the resulting assignments by means of Dynamic Time Warping. Moreover, we show that the proposed approach can be readily combined with global matchings. In an experimental evaluation, we employ the novel method in a signature verification scenario on two widely used benchmark datasets. On both datasets, we empirically confirm that the proposed approach outperforms state-of-the-art methods with respect to both accuracy and runtime.04B - Beitrag Konferenzschrift
- PublikationGraph-based keyword spotting in historical manuscripts using Hausdorff edit distance(Elsevier, 2019) Ameri, Mohammad Reza; Stauffer, Michael; Riesen, Kaspar; Bui, Tien Dai; Fischer, Andreas; Fischer, Andreas [in: Pattern Recognition Letters]Keyword spotting enables content-based retrieval of scanned historical manuscripts using search terms, which, in turn, facilitates the indexation in digital libraries. Recent approaches include graph-based representations that capture the complex structure of handwriting. However, the high representational power of graphs comes at the cost of high computational complexity for graph matching. In this article, we investigate the potential of Hausdorff edit distance (HED) for keyword spotting. It is an efficient quadratic-time approximation of the graph edit distance. In a comprehensive experimental evaluation with four types of handwriting graphs and four benchmark datasets (George Washington, Parzival, Botany, and Alvermann Konzilsprotokolle), we demonstrate a strong performance of the proposed HED-based method when compared with the state of the art, both, in terms of precision and speed.01A - Beitrag in wissenschaftlicher Zeitschrift