Meyer, Jonas

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Meyer
Vorname
Jonas
Name
Meyer, Jonas

Suchergebnisse

Gerade angezeigt 1 - 3 von 3
  • Publikation
    Open urban and forest datasets from a high-performance mobile mapping backpack. A contribution for advancing the creation of digital city twins
    (International Society of Photogrammetry and Remote Sensing, 2021) Blaser, Stefan; Meyer, Jonas; Nebiker, Stephan [in: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences]
    With this contribution, we describe and publish two high-quality street-level datasets, captured with a portable high-performance Mobile Mapping System (MMS). The datasets will be freely available for scientific use. Both datasets, from a city centre and a forest represent area-wide street-level reality captures which can be used e.g. for establishing cloud-based frameworks for infrastructure management as well as for smart city and forestry applications. The quality of these data sets has been thoroughly evaluated and demonstrated. For example, georeferencing accuracies in the centimetre range using these datasets in combination with image-based georeferencing have been achieved. Both high-quality multi sensor system street-level datasets are suitable for evaluating and improving methods for multiple tasks related to high-precision 3D reality capture and the creation of digital twins. Potential applications range from localization and georeferencing, dense image matching and 3D reconstruction to combined methods such as simultaneous localization and mapping and structure-from-motion as well as classification and scene interpretation. Our dataset is available online at: https://www.fhnw.ch/habg/bimage-datasets
    04B - Beitrag Konferenzschrift
  • Publikation
    Long-term visual localization in large scale urban environments exploiting street level imagery
    (Copernicus, 2020) Meyer, Jonas; Rettenmund, Daniel; Nebiker, Stephan [in: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences]
    In this paper, we present our approach for robust long-term visual localization in large scale urban environments exploiting street level imagery. Our approach consists of a 2D-image based localization using image retrieval (NetVLAD) to select reference images. This is followed by a 3D-structure based localization with a robust image matcher (DenseSfM) for accurate pose estimation. This visual localization approach is evaluated by means of the ‘Sun’ subset of the RobotCar seasons dataset, which is part of the Visual Localization benchmark. As the results on the RobotCar benchmark dataset are nearly on par with the top ranked approaches, we focused our investigations on reproducibility and performance with own data. For this purpose, we created a dataset with street-level imagery. In order to have independent reference and query images, we used a road-based and a tram-based mapping campaign with a time difference of four years. The approximately 90% successfully oriented images of both datasets are a good indicator for the robustness of our approach. With about 50% success rate, every second image could be localized with a position accuracy better than 0.25 m and a rotation accuracy better than 2°.
    01A - Beitrag in wissenschaftlicher Zeitschrift
  • Publikation
    Centimetre-accuracy in forests and urban canyons. Combining a high-performance image-based mobile mapping backpack with new georeferencing methods
    (Copernicus, 2020) Blaser, S.; Meyer, Jonas; Nebiker, Stephan; Fricker, L.; Weber, D. [in: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences]
    Advances in digitalization technologies lead to rapid and massive changes in infrastructure management. New collaborative processes and workflows require detailed, accurate and up-to-date 3D geodata. Image-based web services with 3D measurement functionality, for example, transfer dangerous and costly inspection and measurement tasks from the field to the office workplace. In this contribution, we introduced an image-based backpack mobile mapping system and new georeferencing methods for capture previously inaccessible outdoor locations. We carried out large-scale performance investigations at two different test sites located in a city centre and in a forest area. We compared the performance of direct, SLAM-based and image-based georeferencing under demanding real-world conditions. Both test sites include areas with restricted GNSS reception, poor illumination, and uniform or ambiguous geometry, which create major challenges for reliable and accurate georeferencing. In our comparison of georeferencing methods, image-based georeferencing improved the median precision of coordinate measurement over direct georeferencing by a factor of 10–15 to 3 mm. Image-based georeferencing also showed a superior performance in terms of absolute accuracies with results in the range from 4.3 cm to 13.2 cm. Our investigations showed a great potential for complementing 3D image-based geospatial web-services of cities as well as for creating such web services for forest applications. In addition, such accurately georeferenced 3D imagery has an enormous potential for future visual localization and augmented reality applications.
    01A - Beitrag in wissenschaftlicher Zeitschrift