Messner, Catherine

Lade...
Profilbild
E-Mail-Adresse
Geburtsdatum
Projekt
Organisationseinheiten
Berufsbeschreibung
Nachname
Messner
Vorname
Catherine
Name
Messner, Catherine

Suchergebnisse

Gerade angezeigt 1 - 1 von 1
  • Publikation
    Assessment of fibrotic pathways induced by environmental chemicals using 3D-human liver microtissue model
    (Elsevier, 30.12.2020) Lu, Yan; Messner, Catherine; Suter-Dick, Laura [in: Environmental Research]
    Exposure to environmental chemicals, particularly those with persistent and bioaccumulative properties have been linked to liver diseases. Induction of fibrotic pathways is considered as a pre-requirement of chemical induced liver fibrosis. Here, we applied 3D in vitro human liver microtissues (MTs) composed of HepaRG, THP-1 and hTERT-HSC that express relevant hepatic pathways (bile acid, sterol, and xenobiotic metabolism) and can recapitulate key events of liver fibrosis (e.g. extracellular matrix-deposition). The liver MTs were exposed to a known profibrotic chemical, thioacetamide (TAA) and three representative environmental chemicals (TCDD, benzo [a] pyrene (BaP) and PCB126). Both TAA and BaP triggered fibrotic pathway related events such as he-patocellular damage (cytotoxicity and decreased albumin release), hepatic stellate cell activation (transcriptional upregulation of α-SMA and Col1α1) and extracellular matrix remodelling. TCDD or PCB126 at measured con-centrations did not elicit these responses in the 3D liver MTs system, though they caused cytotoxicity in HepaRG monoculture at high concentrations. Reduced human transcriptome (RHT) analysis captured molecular re-sponses involved in liver fibrosis when MTs were treated with TAA and BaP. The results suggest that 3D, multicellular, human liver microtissues represent an alternative, human-relevant, in vitro liver model for assessing fibrotic pathways induced by environmental chemicals.
    01A - Beitrag in wissenschaftlicher Zeitschrift