FLASH-FAULT. Fast learning algorithm for a single sensor based heating system fault detection

dc.contributorSawant, Parantapa
dc.contributorvon Bülow, Nicola
dc.date.accessioned2025-12-08T13:01:25Z
dc.description.abstractThe potential of machine learning (ML) algorithms for fault detection in residential building heating systems is well established in scientific literature including our recent works. We developed a preliminary ML-pipeline, that utilizes time series forecasting to identify faults in a solar thermal system using minimal initial data unlike existing data-intensive approaches. Although the ML algorithm achieves similar accuracies as the rule-based algorithm integrated into the industrial partner’s single-sensor IoT framework, it lacks theoretical testing and conceptual evaluation. We aim to advance this ML approach to industrial maturity, necessitating a critical evaluation of our ML pipeline and support for robust deployment. This project has significant potential for fault detection in other heating systems, such as heat pumps and district heating, projected to play a major role in Switzerland’s future energy mix. Collaboration with SDSC is essential for ensuring the successful translation of our research prototype into a robust, production-ready application, significantly impacting energy efficiency and sustainability in building heating systems.
dc.description.urihttps://www.fhnw.ch/de/die-fhnw/hochschulen/architektur-bau-geomatik/institute/ineb/ineb-forschung/erneuerbare-energie-gebaeudetechnik/flash-fault
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/54309
dc.subject.ddc624 - Ingenieurbau und Umwelttechnik
dc.titleFLASH-FAULT. Fast learning algorithm for a single sensor based heating system fault detection
dc.type00 - Projektde_CH
dspace.entity.typeProject
fhnw.InventedHereYes
fhnw.Project.ContactSawant, Parantapa
fhnw.Project.End2025-12
fhnw.Project.FinanceSwiss Data Science Center
fhnw.Project.ManagerSawant, Parantapa
fhnw.Project.PartnersSwiss Data Science Center
fhnw.Project.Start2025-01
fhnw.Project.Statelaufend
fhnw.Project.Typeangewandte Forschung
fhnw.affiliation.hochschuleHochschule für Architektur, Bau und Geomatik FHNWde_CH
fhnw.affiliation.institutInstitut Nachhaltigkeit und Energie am Bau
fhnw.strategicActionFieldZero Emission
relation.isContributorOfProject390e4db9-db75-47c2-986f-e79bf991ac8f
relation.isContributorOfProjectf54f77e0-f086-43b3-ae37-af678ec01e40
relation.isContributorOfProject.latestForDiscovery390e4db9-db75-47c2-986f-e79bf991ac8f
relation.isProjectContactOfProject390e4db9-db75-47c2-986f-e79bf991ac8f
relation.isProjectContactOfProject.latestForDiscovery390e4db9-db75-47c2-986f-e79bf991ac8f
relation.isProjectManagerOfProject390e4db9-db75-47c2-986f-e79bf991ac8f
relation.isProjectManagerOfProject.latestForDiscovery390e4db9-db75-47c2-986f-e79bf991ac8f
Dateien

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
2.66 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: