Deep brain stimulation: emerging tools for simulation, data analysis, and visualization

dc.accessRightsAnonymous*
dc.contributor.authorWårdell, Karin
dc.contributor.authorNordin, Teresa
dc.contributor.authorZsigmond, Peter
dc.contributor.authorWestin, Carl-Fredrik
dc.contributor.authorHariz, Marwan
dc.contributor.authorVogel, Dorian
dc.contributor.authorHemm-Ode, Simone
dc.date.accessioned2022-10-12T11:09:00Z
dc.date.available2022-10-12T11:09:00Z
dc.date.issued2022-04-11
dc.description.abstractDeep brain stimulation (DBS) is a well-established neurosurgical procedure for movement disorders that is also being explored for treatment-resistant psychiatric conditions. This review highlights important consideration for DBS simulation and data analysis. The literature on DBS has expanded considerably in recent years, and this article aims to identify important trends in the field. During DBS planning, surgery, and follow up sessions, several large data sets are created for each patient, and it becomes clear that any group analysis of such data is a big data analysis problem and has to be handled with care. The aim of this review is to provide an update and overview from a neuroengineering perspective of the current DBS techniques, technical aids, and emerging tools with the focus on patient-specific electric field (EF) simulations, group analysis, and visualization in the DBS domain. Examples are given from the state-of-the-art literature including our own research. This work reviews different analysis methods for EF simulations, tractography, deep brain anatomical templates, and group analysis. Our analysis highlights that group analysis in DBS is a complex multi-level problem and selected parameters will highly influence the result. DBS analysis can only provide clinically relevant information if the EF simulations, tractography results, and derived brain atlases are based on as much patient-specific data as possible. A trend in DBS research is creation of more advanced and intuitive visualization of the complex analysis results suitable for the clinical environment.en_US
dc.identifier.doi10.3389/fnins.2022.834026
dc.identifier.issn1662-453X
dc.identifier.issn1662-4548
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/33946
dc.identifier.urihttps://doi.org/10.26041/fhnw-4324
dc.language.isoenen_US
dc.publisherFrontiersen_US
dc.relation.ispartofFrontiers in Neuroscienceen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.subjectdeep brain stimulation (DBS)en_US
dc.subjectmodeling and simulationen_US
dc.subjectneuroimagingen_US
dc.subjectprobabilistic mappingen_US
dc.subjectconnectivityen_US
dc.subjectintraoperative measurementsen_US
dc.subjectvisualizationen_US
dc.subject.ddc500 - Naturwissenschaftenen_US
dc.titleDeep brain stimulation: emerging tools for simulation, data analysis, and visualizationen_US
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume16en_US
dspace.entity.typePublication
fhnw.InventedHereYesen_US
fhnw.IsStudentsWorknoen_US
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publicationen_US
fhnw.affiliation.hochschuleHochschule für Life Sciences FHNWde_CH
fhnw.affiliation.institutInstitut für Medizintechnik und Medizininformatikde_CH
fhnw.openAccessCategoryGolden_US
fhnw.publicationStatePublisheden_US
relation.isAuthorOfPublication751f4aee-97bb-4592-91f2-6e3e4623de25
relation.isAuthorOfPublication.latestForDiscovery751f4aee-97bb-4592-91f2-6e3e4623de25
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
fnins-16-834026.pdf
Größe:
5.32 MB
Format:
Adobe Portable Document Format
Beschreibung:

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
1.37 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: