Correcting alpha misattribution in portfolio sorts

dc.contributor.authorHöchle, Daniel
dc.contributor.authorSchmid, Markus
dc.contributor.authorZimmermann, Heinz
dc.date.accessioned2024-06-04T06:53:50Z
dc.date.available2024-06-04T06:53:50Z
dc.date.issued2018
dc.description.abstractWe show that portfolio sorts, as commonly employed in empirical asset pricing applications, are at risk of accidentally misattributing parts of the risk-adjusted return (or "alpha") to the firm characteristic underlying the sort. Such misattribution occurs if the firm characteristic is correlated with an unobservable yet time-persistent factor. We propose a novel, regression-based methodology for analyzing asset returns. Our technique can reproduce the alpha and factor exposure estimates from all variants of sorting assets into (e.g., decile) portfolios. In addition, and contrary to standard portfolio sorts, our approach handles multivariate and continuous firm characteristics and, if firm-specific (fixed) effects are included in the analysis, is robust to alpha misattribution. In our empirical analysis, we indeed find alpha misattribution to be an issue in conventional portfolio sorts as several well-known characteristics-based factors lose their predictive power when we account for firm fixed effects.
dc.event16th EUROFIDAI Paris December Finance Meeting
dc.event.end2018-12-20
dc.event.start2018-12-20
dc.identifier.doi
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/42349
dc.language.isoen
dc.spatialParis
dc.subject.ddc330 - Wirtschaft
dc.titleCorrecting alpha misattribution in portfolio sorts
dc.type06 - Präsentation
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of an abstract
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutInstitut für Finanzmanagementde_CH
relation.isAuthorOfPublicationdfffb76a-9f22-40ae-8407-a00d730c561e
relation.isAuthorOfPublication.latestForDiscoverydfffb76a-9f22-40ae-8407-a00d730c561e
Dateien

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: