Anomaly detection in railway infrastructure
Lade...
Autor:innen
Autor:in (Körperschaft)
Publikationsdatum
2021
Typ der Arbeit
Studiengang
Typ
04B - Beitrag Konferenzschrift
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Proceedings of the AAAI 2021 Spring Symposium on Combining Machine Learning and Knowledge Engineering (AAAI-MAKE 2021)
Themenheft
DOI der Originalpublikation
Reihe / Serie
Reihennummer
Jahrgang / Band
Ausgabe / Nummer
Seiten / Dauer
Patentnummer
Verlag / Herausgebende Institution
Verlagsort / Veranstaltungsort
Palo Alto
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
In order to keep complex railway systems fail-safe, sophisticated maintenance of the rolling stock and infrastructure are most essential. Although AI-based predictive maintenance systems exist in many different industries, there is still quite large potential for different application scenarios. The current research shows such an example, where machine learning can be applied to detect anomalies in the pantograph-catenary system by using a simple convolutional neural network that is able to detect arc ignitions during train operation. The paper provides some insights into the process of the system development life cycle. Starting from the initial idea to use machine learning for anomaly detection, over the system design of a prototype and the training of the Keras-based machine-learning model, up until the evaluation of the conducted experiments. The arcVision system prototype provides valuable insights into how a predictive maintenance process could be established by combining the results from the machine-learning model with rules and insights from manual inspections.
Schlagwörter
Fachgebiet (DDC)
330 - Wirtschaft
Veranstaltung
AAAI 2021 Spring Symposium on Combining Machine Learning and Knowledge Engineering (AAAI-MAKE 2021)
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
22.03.2021
Enddatum der Konferenz
24.03.2021
Datum der letzten Prüfung
ISBN
ISSN
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Publikationsstatus
Veröffentlicht
Begutachtung
Peer-Review der ganzen Publikation
Open Access-Status
Diamond
Zitation
MORANDI, David und Stephan JÜNGLING, 2021. Anomaly detection in railway infrastructure. In: Proceedings of the AAAI 2021 Spring Symposium on Combining Machine Learning and Knowledge Engineering (AAAI-MAKE 2021). Palo Alto. 2021. Verfügbar unter: https://doi.org/10.26041/fhnw-7089