Learning and engineering similarity functions for business recommenders

dc.contributor.authorWitschel, Hans Friedrich
dc.contributor.authorMartin, Andreas
dc.contributor.editorMartin, Andreas
dc.contributor.editorHinkelmann, Knut
dc.contributor.editorGerber, Aurona
dc.contributor.editorLenat, Doug
dc.contributor.editorHarmelen, Frank van
dc.contributor.editorClark, Peter
dc.date.accessioned2024-04-19T05:51:40Z
dc.date.available2024-04-19T05:51:40Z
dc.date.issued2019
dc.description.abstractWe study the optimisation of similarity measures in tasks where the computation of similarities is not directly visible to end users, namely clustering and case-based recommenders. In both, similarity plays a crucial role, but there are also other algorithmic components that contribute to the end result. Our suggested approach introduces a new form of interaction into these scenarios that make the use of similarities transparent to end users and thus allows to gather direct feedback about similarity from them. This happens without distracting them from their goal – rather allowing them to obtain better and more trustworthy results by excluding dissimilar items. We then propose to use the feedback in a way that incorporates machine learning for updating weights and decisions of knowledge engineers about possible additional features, based on insights derived from a summary of user feedback. The reviewed literature and our own previous empirical investigations suggest that this is the most feasible way – involving both machine and human, each in a task that they are particularly good at.
dc.description.urihttps://ceur-ws.org/Vol-2350
dc.eventAAAI 2019 Spring Symposium on Combining Machine Learning with Knowledge Engineering (AAAI-MAKE 20119)
dc.event.end2019-03-27
dc.event.start2019-03-25
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/42824
dc.identifier.urihttps://doi.org/10.26041/fhnw-6789
dc.language.isoen
dc.relation.ispartofProceedings of the AAAI 2019 Spring Symposium on Combining Machine Learning with Knowledge Engineering (AAAI-MAKE 2019)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.spatialPalo Alto
dc.subject.ddc330 - Wirtschaft
dc.titleLearning and engineering similarity functions for business recommenders
dc.type04B - Beitrag Konferenzschrift
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.openAccessCategoryDiamond
fhnw.publicationStatePublished
relation.isAuthorOfPublication4f94a17c-9d05-433c-882f-68f062e0e6ae
relation.isAuthorOfPublication6a3865e7-85dc-41b5-afe3-c834c56fab4e
relation.isAuthorOfPublication.latestForDiscovery4f94a17c-9d05-433c-882f-68f062e0e6ae
relation.isEditorOfPublication6a3865e7-85dc-41b5-afe3-c834c56fab4e
relation.isEditorOfPublication6898bec4-c71c-491e-b5f8-2b1cba9cfa00
relation.isEditorOfPublication.latestForDiscovery6a3865e7-85dc-41b5-afe3-c834c56fab4e
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
Witschel_Martin_2019_Learning_and_engineering_similarityfunctions.pdf
Größe:
431.59 KB
Format:
Adobe Portable Document Format

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: