Improving Hausdorff Edit Distance Using Structural Node Context

dc.accessRightsAnonymous
dc.audienceScience
dc.contributor.authorFischer, Andreas
dc.contributor.authorUchida, Seiichi
dc.contributor.authorFrinken, Volkmar
dc.contributor.authorRiesen, Kaspar
dc.contributor.authorBunke, Horst
dc.contributor.editorLiu, Cheng-Lin
dc.contributor.editorLuo, Bin
dc.contributor.editorKropatsch, Walter G.
dc.contributor.editorCheng, Jian
dc.date.accessioned2015-10-05T07:27:50Z
dc.date.available2015-10-05T07:27:50Z
dc.date.issued2015
dc.description.abstractIn order to cope with the exponential time complexity of graph edit distance, several polynomial-time approximation algorithms have been proposed in recent years. The Hausdorff edit distance is a quadratic-time matching procedure for labeled graphs which reduces the edit distance to a correspondence problem between local substructures. In its original formulation, nodes and their adjacent edges have been considered as local substructures. In this paper, we integrate a more general structural node context into the matching procedure based on hierarchical subgraphs. In an experimental evaluation on diverse graph data sets, we demonstrate that the proposed generalization of Hausdorff edit distance can significantly improve the accuracy of graph classification while maintaining low computational complexity.
dc.identifier.isbn978-3-319-18223-0
dc.identifier.urihttp://hdl.handle.net/11654/8238
dc.language.isodeen_US
dc.publisherSpringer
dc.relation.ispartofGraph-Based Representations in Pattern Recognition - 10th IAPR-TC-15 International Workshop, GbRPR 2015, Beijing, China, May 13-15, 2015.
dc.relation.ispartofseriesLecture Notes in Computer Science
dc.spatialHamburg
dc.titleImproving Hausdorff Edit Distance Using Structural Node Context
dc.type04B - Beitrag Konferenzschrift
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.IsStudentsWorkno
fhnw.PublishedSwitzerlandNo
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.publicationStatePublished
fhnw.seriesNumber9069
relation.isAuthorOfPublicationd761e073-1612-4d22-8521-65c01c19f97a
relation.isAuthorOfPublication.latestForDiscoveryd761e073-1612-4d22-8521-65c01c19f97a
Dateien

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
2.94 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: