Combining graph edit distance and triplet networks for offline signature verification

dc.contributor.authorMaergner, Paul
dc.contributor.authorPondenkandath, Vinaychandran
dc.contributor.authorAlberti, Michele
dc.contributor.authorLiwicki, Marcus
dc.contributor.authorRiesen, Kaspar
dc.contributor.authorIngold, Rolf
dc.contributor.authorFischer, Andreas
dc.date.accessioned2024-03-21T07:43:17Z
dc.date.available2024-03-21T07:43:17Z
dc.date.issued2019
dc.description.abstractOffline signature verification is a challenging pattern recognition task where a writer model is inferred using only a small number of genuine signatures. A combination of complementary writer models can make it more difficult for an attacker to deceive the verification system. In this work, we propose to combine a recent structural approach based on graph edit distance with a statistical approach based on deep triplet networks. The combination of the structural and statistical models achieve significant improvements in performance on four publicly available benchmark datasets, highlighting their complementary perspectives.
dc.identifier.doi10.1016/J.PATREC.2019.06.024
dc.identifier.issn0167-8655
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/42552
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofPattern Recognition Letters
dc.subject.ddc330 - Wirtschaft
dc.titleCombining graph edit distance and triplet networks for offline signature verification
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume125
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaftde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.openAccessCategoryClosed
fhnw.pagination527-533
fhnw.publicationStatePublished
relation.isAuthorOfPublicationd761e073-1612-4d22-8521-65c01c19f97a
relation.isAuthorOfPublication.latestForDiscoveryd761e073-1612-4d22-8521-65c01c19f97a
Dateien
Lizenzbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: