Combining graph edit distance and triplet networks for offline signature verification
dc.contributor.author | Maergner, Paul | |
dc.contributor.author | Pondenkandath, Vinaychandran | |
dc.contributor.author | Alberti, Michele | |
dc.contributor.author | Liwicki, Marcus | |
dc.contributor.author | Riesen, Kaspar | |
dc.contributor.author | Ingold, Rolf | |
dc.contributor.author | Fischer, Andreas | |
dc.date.accessioned | 2024-03-21T07:43:17Z | |
dc.date.available | 2024-03-21T07:43:17Z | |
dc.date.issued | 2019 | |
dc.description.abstract | Offline signature verification is a challenging pattern recognition task where a writer model is inferred using only a small number of genuine signatures. A combination of complementary writer models can make it more difficult for an attacker to deceive the verification system. In this work, we propose to combine a recent structural approach based on graph edit distance with a statistical approach based on deep triplet networks. The combination of the structural and statistical models achieve significant improvements in performance on four publicly available benchmark datasets, highlighting their complementary perspectives. | |
dc.identifier.doi | 10.1016/J.PATREC.2019.06.024 | |
dc.identifier.issn | 0167-8655 | |
dc.identifier.uri | https://irf.fhnw.ch/handle/11654/42552 | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.relation.ispartof | Pattern Recognition Letters | |
dc.subject.ddc | 330 - Wirtschaft | |
dc.title | Combining graph edit distance and triplet networks for offline signature verification | |
dc.type | 01A - Beitrag in wissenschaftlicher Zeitschrift | |
dc.volume | 125 | |
dspace.entity.type | Publication | |
fhnw.InventedHere | Yes | |
fhnw.ReviewType | Anonymous ex ante peer review of a complete publication | |
fhnw.affiliation.hochschule | Hochschule für Wirtschaft FHNW | de_CH |
fhnw.affiliation.institut | Institut für Wirtschaftsinformatik | de_CH |
fhnw.openAccessCategory | Closed | |
fhnw.pagination | 527-533 | |
fhnw.publicationState | Published | |
relation.isAuthorOfPublication | d761e073-1612-4d22-8521-65c01c19f97a | |
relation.isAuthorOfPublication.latestForDiscovery | d761e073-1612-4d22-8521-65c01c19f97a |
Dateien
Lizenzbündel
1 - 1 von 1
Kein Vorschaubild vorhanden
- Name:
- license.txt
- Größe:
- 1.36 KB
- Format:
- Item-specific license agreed upon to submission
- Beschreibung: