Collaborative Recommender Systems for Online Shops

dc.accessRightsAnonymous
dc.audienceSonstige
dc.contributor.authorLeimstoll, Uwe
dc.contributor.authorStormer, Henrik
dc.date.accessioned2015-10-05T15:41:10Z
dc.date.available2015-10-05T15:41:10Z
dc.date.issued2007
dc.description.abstractRecommender systems are often used in electronic shops in order to suggest similar or related products, potentially interesting products for a given customer or a set of products for a marketing campaign. Most recommender systems use the collaborative filtering method in order to provide the personalization information. The collaborative filtering method is a very efficient and convenient way of achieving personalization as there is no need to introduce semantic information about the products or to manually link products and users together. In the last years, a number of optimizations for collaborative filtering techniques have been developed. This paper collects the ideas and shows which of them could be integrated successfully in order to optimize a collaborative recommender system for online shops.
dc.event13th Americas Conference on Information Systems
dc.identifier.urihttp://hdl.handle.net/11654/9054
dc.identifier.urihttps://doi.org/10.26041/fhnw-3033
dc.language.isodeen_US
dc.relation.ispartofProceedings of the 13th Americas Conference on Information Systems
dc.subjectB2C
dc.subjectCRM
dc.subjectCustomer Profiles
dc.subject.ddc330 - Wirtschaft
dc.subject.ddc005 - Computer Programmierung, Programme und Daten
dc.titleCollaborative Recommender Systems for Online Shops
dc.type04B - Beitrag Konferenzschrift
dspace.entity.typePublication
fhnw.InventedHereunbekannt
fhnw.ReviewTypeNo peer review
fhnw.affiliation.hochschuleHochschule für Wirtschaftde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.publicationStatePublished
relation.isAuthorOfPublication76b2ccad-9010-4401-8d17-449aaa516ea6
relation.isAuthorOfPublication.latestForDiscovery76b2ccad-9010-4401-8d17-449aaa516ea6
Dateien
Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
2007_Leimstoll-Stormer_Recommender Systems.pdf
Größe:
148.94 KB
Format:
Adobe Portable Document Format
Beschreibung:
PDF download collaborative recommender systems for online shops