Fuzzy Time Series Methods for Forecasting

dc.contributor.authorVakayil, Sherin
dc.contributor.mentorHanne, Thomas
dc.date.accessioned2025-12-15T13:39:54Z
dc.date.issued2025
dc.description.abstractThe rapid growth of time-series data in domains such as energy, finance, and IoT has intensified the trade-off between model interpretability and forecasting performance. Fuzzy Time Series (FTS) methods offer transparent, rule-based forecasts but lack systematic comparison against modern neural and linear approaches across varied real-world settings.
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/54867
dc.language.isoen
dc.publisherHochschule für Wirtschaft FHNW
dc.spatialOlten
dc.subject.ddc330 - Wirtschaft
dc.titleFuzzy Time Series Methods for Forecasting
dc.type11 - Studentische Arbeit
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.StudentsWorkTypeMaster
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutMaster of Sciencede_CH
relation.isMentorOfPublication35d8348b-4dae-448a-af2a-4c5a4504da04
relation.isMentorOfPublication.latestForDiscovery35d8348b-4dae-448a-af2a-4c5a4504da04
Dateien