Fuzzy Time Series Methods for Forecasting
| dc.contributor.author | Vakayil, Sherin | |
| dc.contributor.mentor | Hanne, Thomas | |
| dc.date.accessioned | 2025-12-15T13:39:54Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | The rapid growth of time-series data in domains such as energy, finance, and IoT has intensified the trade-off between model interpretability and forecasting performance. Fuzzy Time Series (FTS) methods offer transparent, rule-based forecasts but lack systematic comparison against modern neural and linear approaches across varied real-world settings. | |
| dc.identifier.uri | https://irf.fhnw.ch/handle/11654/54867 | |
| dc.language.iso | en | |
| dc.publisher | Hochschule für Wirtschaft FHNW | |
| dc.spatial | Olten | |
| dc.subject.ddc | 330 - Wirtschaft | |
| dc.title | Fuzzy Time Series Methods for Forecasting | |
| dc.type | 11 - Studentische Arbeit | |
| dspace.entity.type | Publication | |
| fhnw.InventedHere | Yes | |
| fhnw.StudentsWorkType | Master | |
| fhnw.affiliation.hochschule | Hochschule für Wirtschaft FHNW | de_CH |
| fhnw.affiliation.institut | Master of Science | de_CH |
| relation.isMentorOfPublication | 35d8348b-4dae-448a-af2a-4c5a4504da04 | |
| relation.isMentorOfPublication.latestForDiscovery | 35d8348b-4dae-448a-af2a-4c5a4504da04 |