Large-scale network analysis reveals the sequence space architecture of antibody repertoires

dc.contributor.authorMiho, Enkelejda
dc.contributor.authorRoškar, Rok
dc.contributor.authorGreiff, Victor
dc.contributor.authorReddy, Sai T.
dc.date.accessioned2024-08-23T10:00:37Z
dc.date.available2024-08-23T10:00:37Z
dc.date.issued2019-12-01
dc.description.abstractThe architecture of mouse and human antibody repertoires is defined by the sequence similarity networks of the clones that compose them. The major principles that define the architecture of antibody repertoires have remained largely unknown. Here, we establish a high-performance computing platform to construct large-scale networks from comprehensive human and murine antibody repertoire sequencing datasets (>100,000 unique sequences). Leveraging a network-based statistical framework, we identify three fundamental principles of antibody repertoire architecture: reproducibility, robustness and redundancy. Antibody repertoire networks are highly reproducible across individuals despite high antibody sequence dissimilarity. The architecture of antibody repertoires is robust to the removal of up to 50–90% of randomly selected clones, but fragile to the removal of public clones shared among individuals. Finally, repertoire architecture is intrinsically redundant. Our analysis provides guidelines for the large-scale network analysis of immune repertoires and may be used in the future to define disease-associated and synthetic repertoires.
dc.identifier.doi10.1038/s41467-019-09278-8
dc.identifier.issn2041-1723
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/46944
dc.identifier.urihttps://doi.org/10.26041/fhnw-9968
dc.language.isoen
dc.publisherNature
dc.relation.ispartofNature Communications
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc600 - Technik, Medizin, angewandte Wissenschaften
dc.titleLarge-scale network analysis reveals the sequence space architecture of antibody repertoires
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume10
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Life Sciences FHNWde_CH
fhnw.affiliation.institutInstitut für Medizintechnik und Medizininformatikde_CH
fhnw.openAccessCategoryGold
fhnw.pagination1321
fhnw.publicationStatePublished
relation.isAuthorOfPublication30aa6b4f-8d02-4f33-8551-6261e7383b23
relation.isAuthorOfPublication3d39049f-ff63-4e50-949b-ee67f7dcb763
relation.isAuthorOfPublication.latestForDiscovery30aa6b4f-8d02-4f33-8551-6261e7383b23
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
Large-scale network analysis.pdf
Größe:
1.03 MB
Format:
Adobe Portable Document Format

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
2.66 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: