A comparative study of pattern recognition algorithms for predicting the inpatient mortality risk using routine laboratory measurements

dc.contributor.authorSchütz, Narayan
dc.contributor.authorLeichtle, Alexander Benedikt
dc.contributor.authorRiesen, Kaspar
dc.date.accessioned2024-03-18T13:55:47Z
dc.date.available2024-03-18T13:55:47Z
dc.date.issued2018
dc.description.abstractLaboratory tests are a common and relatively cheap way to assess the general health status of patients. Various publications showed the potential of laboratory measurements for predicting inpatient mortality using statistical methodologies. However, these efforts are basically limited to the use of logistic regression models. In the present paper we use anonymized data from about 40,000 inpatient admissions to the Inselspital in Bern (Switzerland) to evaluate the potential of powerful pattern recognition algorithms employed for this particular risk prediction. In addition to the age and sex of the inpatients, a set of 33 laboratory measurements, frequently available at the Inselspital, are used as basic variables. In a large empirical evaluation we demonstrate that recent pattern recognition algorithms (such as random forests, gradient boosted trees or neural networks) outperform the more traditional approaches based on logistic regression. Moreover, we show how the predictions of the pattern recognition algorithms, which cannot be directly interpreted in general, can be calibrated to output a meaningful probabilistic risk score.
dc.identifier.doi10.1007/s10462-018-9625-3
dc.identifier.issn1573-7462
dc.identifier.issn0269-2821
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/42551
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofArtificial Intelligence Review
dc.subject.ddc330 - Wirtschaft
dc.titleA comparative study of pattern recognition algorithms for predicting the inpatient mortality risk using routine laboratory measurements
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume52
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaftde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.openAccessCategoryClosed
fhnw.pagination2559–2573
fhnw.publicationStatePublished
relation.isAuthorOfPublicationd761e073-1612-4d22-8521-65c01c19f97a
relation.isAuthorOfPublication.latestForDiscoveryd761e073-1612-4d22-8521-65c01c19f97a
Dateien
Lizenzbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: