An online movement and tremor identification algorithm for evaluation during deep brain stimulation

dc.accessRightsAnonymous*
dc.contributor.authorBourgeois, Frédéric
dc.contributor.authorPambakian, Nicola
dc.contributor.authorCoste, Jérôme
dc.contributor.authorLange, Ijsbrand de
dc.contributor.authorLemaire, Jean-Jacques
dc.contributor.authorHemm-Ode, Simone
dc.date.accessioned2023-02-09T08:36:11Z
dc.date.available2023-02-09T08:36:11Z
dc.date.issued2022-09-02
dc.description.abstractINTRODUCTION: Deep brain stimulation (DBS) is widely used to alleviate symptoms of movement disorders. During intraoperative stimulation the influence of active or passive movements on the neuronal activity is often evaluated but the evaluation remains mostly subjective. The objective of this paper is to investigate the potential of a previously developed Weighted-frequency Fourier Linear combiner and Kalman filter-based recursive algorithm to identify tremor phases and types. METHODS: Ten accelerometer recordings from eight patients were acquired during DBS from which 186 phases were manually annotated into: rest, postural and kinetic phase without tremor, and rest, postural and kinetic phase with tremor. The method first estimates the instantaneous tremor frequency and then decomposes the motion signal into voluntary and tremorous parts. The tremorous part is used to quantify tremor and the voluntary part to differentiate rest, postural and kinetic phases. RESULTS: Instantaneous tremor frequency and amplitude are successfully tracked online. The overall accuracy for tremorous phases only is 89.1% and 76.3% when also non-tremorous phases are considered. Two main misclassification cases are identified and further discussed. CONCLUSION: The results demonstrate the potential of the developed algorithm as an online tremorous movement classifier. It would benefit from a more advanced tremor detector but nevertheless the obtained digital biomarkers offer an evidence-based analysis and could optimize the efficacy of DBS treatment.en_US
dc.identifier.doi10.1515/cdbme-2022-1028
dc.identifier.issn2364-5504
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/34546
dc.identifier.urihttps://doi.org/10.26041/fhnw-4611
dc.issue2en_US
dc.language.isoenen_US
dc.publisherDe Gruyteren_US
dc.relation.ispartofCurrent Directions in Biomedical Engineeringen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.subjectTremor estimationen_US
dc.subjectWeighted-frequency Fourier Linear combineren_US
dc.subjectDeep brain stimulationen_US
dc.subjectMicroelectrode recordingen_US
dc.subjectDigital biomarkeren_US
dc.subject.ddc600 - Technik, Medizin, angewandte Wissenschaftenen_US
dc.titleAn online movement and tremor identification algorithm for evaluation during deep brain stimulationen_US
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume8en_US
dspace.entity.typePublication
fhnw.InventedHereYesen_US
fhnw.IsStudentsWorknoen_US
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publicationen_US
fhnw.affiliation.hochschuleHochschule für Life Sciences FHNWde_CH
fhnw.affiliation.institutInstitut für Medizintechnik und Medizininformatikde_CH
fhnw.openAccessCategoryGolden_US
fhnw.pagination105-108en_US
fhnw.publicationStatePublisheden_US
relation.isAuthorOfPublicationa2a59ef5-ab3b-4a4c-82f3-3cdcbfd84ed0
relation.isAuthorOfPublication751f4aee-97bb-4592-91f2-6e3e4623de25
relation.isAuthorOfPublication.latestForDiscovery751f4aee-97bb-4592-91f2-6e3e4623de25
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
10.1515_cdbme-2022-1028.pdf
Größe:
1.37 MB
Format:
Adobe Portable Document Format
Beschreibung:

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
1.37 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: