Determine the heat demand of existing buildings with machine learning
dc.contributor.author | Hofmann, Joachim Werner | |
dc.contributor.author | Amoser, Christian | |
dc.contributor.author | Geissler, Achim | |
dc.contributor.author | Hall, Monika | |
dc.date.accessioned | 2023-12-07T13:47:30Z | |
dc.date.available | 2023-12-07T13:47:30Z | |
dc.date.issued | 2023-12-01 | |
dc.description.abstract | The renovation rate of existing buildings plays a major role in the Swiss Energy Strategy 2050+. To increase this rate, there must be a simple and cost-effective method to determine the heat demand of existing buildings. In this paper, the generation of such a method, based on the Swiss cantonal building energy certificate (GEAK) database with the help of machine learning (ML), is studied. The aim of the project was to develop a ML model which allows the heat demand of existing buildings to be determined quickly with a minimal set of parameters. The comparison of the GEAK building envelope class for single family houses calculated with the new ML model and the original GEAK classes shows that approximately 62 % have the same class, 32 % differ by one class and 6 % by two classes. The ML model is a good starting point for further refinements and developments. | |
dc.identifier.doi | 10.1088/1742-6596/2600/3/032013 | |
dc.identifier.issn | 1742-6588 | |
dc.identifier.issn | 1742-6596 | |
dc.identifier.uri | https://irf.fhnw.ch/handle/11654/38816 | |
dc.identifier.uri | https://doi.org/10.26041/fhnw-5920 | |
dc.issue | 3 | |
dc.language.iso | en | |
dc.publisher | IOP Publishing | |
dc.relation.ispartof | Journal of Physics: Conference Series | |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.subject | Machine learning | |
dc.subject | Deep neural network | |
dc.subject | Head demand | |
dc.subject.ddc | 624 - Ingenieurbau und Umwelttechnik | |
dc.title | Determine the heat demand of existing buildings with machine learning | |
dc.type | 01A - Beitrag in wissenschaftlicher Zeitschrift | |
dc.volume | 2600 | |
dspace.entity.type | Publication | |
fhnw.InventedHere | Yes | |
fhnw.LegalEntity.author | Institut Nachhaltigkeit und Energie am Bau, Hochschule für Architektur, Bau und Geomatik FHNW | |
fhnw.ReviewType | Anonymous ex ante peer review of a complete publication | |
fhnw.affiliation.hochschule | Hochschule für Architektur, Bau und Geomatik FHNW | de_CH |
fhnw.affiliation.institut | Institut Nachhaltigkeit und Energie am Bau | de_CH |
fhnw.openAccessCategory | Green | |
fhnw.pagination | 1-7 | |
fhnw.publicationState | Published | |
fhnw.specialIssue | CISBAT 2023 | |
relation.isAuthorOfPublication | ba0d0430-a777-415e-b67c-0f090e0d55ba | |
relation.isAuthorOfPublication | dff0779c-e35e-4e1d-97ed-b41a2b6ae1ac | |
relation.isAuthorOfPublication | 29755986-0864-4ca5-92db-f08f187d444b | |
relation.isAuthorOfPublication.latestForDiscovery | ba0d0430-a777-415e-b67c-0f090e0d55ba |
Dateien
Originalbündel
1 - 1 von 1
- Name:
- Hofmann_2023_J._Phys.__Conf._Ser._2600_032013.pdf
- Größe:
- 1.05 MB
- Format:
- Adobe Portable Document Format
Lizenzbündel
1 - 1 von 1
Kein Vorschaubild vorhanden
- Name:
- license.txt
- Größe:
- 1.36 KB
- Format:
- Item-specific license agreed upon to submission
- Beschreibung: