Unconstrained generation of synthetic antibody–antigen structures to guide machine learning methodology for antibody specificity prediction

dc.accessRightsAnonymous*
dc.contributor.authorRobert, Philippe A.
dc.contributor.authorAkbar, Rahmad
dc.contributor.authorPavlović, Milena
dc.contributor.authorWidrich, Michael
dc.contributor.authorSnapkov, Igor
dc.contributor.authorSlabodkin, Andrei
dc.contributor.authorChernigovskaya, Maria
dc.contributor.authorScheffer, Lonneke
dc.contributor.authorSmorodina, Eva
dc.contributor.authorRawat, Puneet
dc.contributor.authorMehta, Brij Bhushan
dc.contributor.authorVu, Mai Ha
dc.contributor.authorMathisen, Ingvild Frøberg
dc.contributor.authorPrósz, Aurél
dc.contributor.authorAbram, Krzysztof
dc.contributor.authorOlar, Axel
dc.contributor.authorMiho, Enkelejda
dc.contributor.authorHaug, Dag Trygve Tryslew
dc.contributor.authorLund-Johansen, Fridtjof
dc.contributor.authorHochreiter, Sepp
dc.contributor.authorHobæk Haff, Ingrid
dc.contributor.authorKlambauer, Günter
dc.contributor.authorSandve, Geir Kjetil
dc.contributor.authorGreiff, Victor
dc.date.accessioned2023-02-17T12:49:03Z
dc.date.available2023-02-17T12:49:03Z
dc.date.issued2022-12-19
dc.description.abstractMachine learning (ML) is a key technology for accurate prediction of antibody–antigen binding. Two orthogonal problems hinder the application of ML to antibody-specificity prediction and the benchmarking thereof: the lack of a unified ML formalization of immunological antibody-specificity prediction problems and the unavailability of large-scale synthetic datasets to benchmark real-world relevant ML methods and dataset design. Here we developed the Absolut! software suite that enables parameter-based unconstrained generation of synthetic lattice-based three-dimensional antibody–antigen-binding structures with ground-truth access to conformational paratope, epitope and affinity. We formalized common immunological antibody-specificity prediction problems as ML tasks and confirmed that for both sequence- and structure-based tasks, accuracy-based rankings of ML methods trained on experimental data hold for ML methods trained on Absolut!-generated data. The Absolut! framework has the potential to enable real-world relevant development and benchmarking of ML strategies for biotherapeutics design.en_US
dc.identifier.doi10.1038/s43588-022-00372-4
dc.identifier.issn2662-8457
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/34636
dc.issue12en_US
dc.language.isoenen_US
dc.publisherNatureen_US
dc.relation.ispartofNature Computational Scienceen_US
dc.subject.ddc600 - Technik, Medizin, angewandte Wissenschaftenen_US
dc.titleUnconstrained generation of synthetic antibody–antigen structures to guide machine learning methodology for antibody specificity predictionen_US
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume2en_US
dspace.entity.typePublication
fhnw.InventedHereYesen_US
fhnw.IsStudentsWorknoen_US
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publicationen_US
fhnw.affiliation.hochschuleHochschule für Life Sciences FHNWde_CH
fhnw.affiliation.institutInstitut für Medizintechnik und Medizininformatikde_CH
fhnw.openAccessCategoryCloseden_US
fhnw.pagination845-865en_US
fhnw.publicationStatePublisheden_US
relation.isAuthorOfPublication30aa6b4f-8d02-4f33-8551-6261e7383b23
relation.isAuthorOfPublication3d39049f-ff63-4e50-949b-ee67f7dcb763
relation.isAuthorOfPublication.latestForDiscovery30aa6b4f-8d02-4f33-8551-6261e7383b23
Dateien

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
1.37 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: