Artificial intelligence and machine learning for maturity evaluation and model validation

dc.contributor.authorHanne, Thomas
dc.contributor.authorGachnang, Phillip
dc.contributor.authorGatziu Grivas, Stella
dc.contributor.authorKirecci, Ilyas
dc.contributor.authorSchmitter, Paul
dc.date.accessioned2024-04-22T08:15:05Z
dc.date.available2024-04-22T08:15:05Z
dc.date.issued2022
dc.description.abstractIn this paper, we discuss the possibility of using machine learning (ML) to specify and validate maturity models, in particular maturity models related to the assessment of digital capabilities of an organization. Over the last decade, a rather large number of maturity models have been suggested for different aspects (such as type of technology or considered processes) and in relation to different industries. Usually, these models are based on a number of assumptions such as the data used for the assessment, the mathematical formulation of the model and various parameters such as weights or importance indicators. Empirical evidence for such assumptions is usually lacking. We investigate the potential of using data from assessments over time and for similar institutions for the ML of respective models. Related concepts are worked out in some details and for some types of maturity assessment models, a possible application of the concept is discussed.
dc.event2022 13th International Conference on E-business, Management and Economics (ICEME 2022)
dc.event.end2022-07-18
dc.event.start2022-07-16
dc.identifier.doihttps://doi.org/10.1145/3556089.3556102
dc.identifier.isbn978-1-4503-9639-4
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/43411
dc.language.isoen
dc.relation.ispartofICEME 2022. The 2022 13th International Conference on E-business, Management and Economics (ICEME 2022). Beijing, China (vurtual conference), July 16-18, 2022
dc.spatialBeijing
dc.subject.ddc330 - Wirtschaft
dc.titleArtificial intelligence and machine learning for maturity evaluation and model validation
dc.type04B - Beitrag Konferenzschrift
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.openAccessCategoryClosed
fhnw.pagination256-260
fhnw.publicationStatePublished
relation.isAuthorOfPublication35d8348b-4dae-448a-af2a-4c5a4504da04
relation.isAuthorOfPublication98d19d9f-59f1-47db-a407-a144bb75b2c1
relation.isAuthorOfPublicationdf27a5dc-e1d3-4762-9b30-2cd5d1ebb91f
relation.isAuthorOfPublication.latestForDiscovery35d8348b-4dae-448a-af2a-4c5a4504da04
Dateien

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: