Combining Machine Learning with Human Knowledge for Delivery Time Estimations
Loading...
Authors
Author (Corporation)
Publication date
2021
Typ of student thesis
Master
Course of study
Collections
Type
11 - Student thesis
Editors
Editor (Corporation)
Supervisor
Parent work
Special issue
DOI of the original publication
Link
Series
Series number
Volume
Issue / Number
Pages / Duration
Patent number
Publisher / Publishing institution
Hochschule für Wirtschaft FHNW
Place of publication / Event location
Olten
Edition
Version
Programming language
Assignee
Practice partner / Client
Abstract
Deviations in a global supply chain directly affect a retailer’s on-time delivery performance, causing availability problems and lower customer satisfaction. If the variation can be anticipated and more accurate lead-times estimated, proactive measures can be taken to decrease the impact. Existing estimation approaches use machine learning algorithms based on historical data to determine a lead-time value for the future. However, those approaches can only handle knowledge available in a machine-readable form, while expert knowledge about the domain is not considered during the actual prediction. Therefore, this thesis describes three novel approaches used for delivery time predictions that combine a machine learning model with human input. The proposed logic covers two phases: learning based on actual delivery data and capturing human knowledge to cover exceptional situations not reflected in historical data. The proposed models and the resulting estimates were evaluated using deliveries from a retail company. This thesis shows that the pure machine learning model delivers better results than a combination of humans and machines. On the one hand, it is due to the difficulty of incorporating the complexity of human knowledge into the algorithm in a suitable way. On the other hand, the effect is caused by the human tendency to generalize and exaggerate. Although the pure machine learning model delivers superior estimation accuracy than the human-machine combination, the systematic analysis of the results presents insights for future development in this area.
Keywords
Subject (DDC)
Event
Exhibition start date
Exhibition end date
Conference start date
Conference end date
Date of the last check
ISBN
ISSN
Language
English
Created during FHNW affiliation
Yes
Strategic action fields FHNW
Publication status
Review
Open access category
License
Citation
Lochbrunner, M. (2021). Combining Machine Learning with Human Knowledge for Delivery Time Estimations [Hochschule für Wirtschaft FHNW]. https://irf.fhnw.ch/handle/11654/48594