Offline signature verification by combining graph edit distance and triplet networks

dc.contributor.authorMaergner, Paul
dc.contributor.authorPondenkandath, Vinaychandran
dc.contributor.authorAlberti, Michele
dc.contributor.authorLiwicki, Marcus
dc.contributor.authorRiesen, Kaspar
dc.contributor.authorIngold, Rolf
dc.contributor.authorFischer, Andreas
dc.contributor.editorBai, Xiao
dc.contributor.editorHancock, Edwin R.
dc.contributor.editorHo, Tin Kam
dc.contributor.editorWilson, Richard C.
dc.contributor.editorBiggio, Battista
dc.contributor.editorRobles-Kelly, Antonio
dc.date.accessioned2024-04-18T06:53:47Z
dc.date.available2024-04-18T06:53:47Z
dc.date.issued2018
dc.description.abstractBiometric authentication by means of handwritten signatures is a challenging pattern recognition task, which aims to infer a writer model from only a handful of genuine signatures. In order to make it more difficult for a forger to attack the verification system, a promising strategy is to combine different writer models. In this work, we propose to complement a recent structural approach to offline signature verification based on graph edit distance with a statistical approach based on metric learning with deep neural networks. On the MCYT and GPDS benchmark datasets, we demonstrate that combining the structural and statistical models leads to significant improvements in performance, profiting from their complementary properties.
dc.eventS+SSPR 2018. IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR 2018) and Structural and Syntactic Pattern Recognition (SSPR2018)
dc.event.end2018-08-19
dc.event.start2018-08-17
dc.identifier.doihttps://doi.org/10.1007/978-3-319-97785-0_45
dc.identifier.isbn978-3-319-97784-3
dc.identifier.isbn978-3-319-97785-0
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/42436
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofStructural, syntactic, and statistical pattern recognition. Joint IAPR International Workshop, S+SSPR 2018, Beijing, China, August 17-19, 2018. Proceedings
dc.relation.ispartofseriesLecture notes in computer science
dc.spatialCham
dc.subject.ddc330 - Wirtschaft
dc.titleOffline signature verification by combining graph edit distance and triplet networks
dc.type04B - Beitrag Konferenzschrift
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaftde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.openAccessCategoryClosed
fhnw.pagination470-480
fhnw.publicationStatePublished
fhnw.seriesNumber11004
relation.isAuthorOfPublicationd761e073-1612-4d22-8521-65c01c19f97a
relation.isAuthorOfPublicatione83eff11-b557-4fff-985e-1bbb1fd15e0c
relation.isAuthorOfPublication.latestForDiscoveryd761e073-1612-4d22-8521-65c01c19f97a
Dateien
Lizenzbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: