Offline signature verification by combining graph edit distance and triplet networks
dc.contributor.author | Maergner, Paul | |
dc.contributor.author | Pondenkandath, Vinaychandran | |
dc.contributor.author | Alberti, Michele | |
dc.contributor.author | Liwicki, Marcus | |
dc.contributor.author | Riesen, Kaspar | |
dc.contributor.author | Ingold, Rolf | |
dc.contributor.author | Fischer, Andreas | |
dc.contributor.editor | Bai, Xiao | |
dc.contributor.editor | Hancock, Edwin R. | |
dc.contributor.editor | Ho, Tin Kam | |
dc.contributor.editor | Wilson, Richard C. | |
dc.contributor.editor | Biggio, Battista | |
dc.contributor.editor | Robles-Kelly, Antonio | |
dc.date.accessioned | 2024-04-18T06:53:47Z | |
dc.date.available | 2024-04-18T06:53:47Z | |
dc.date.issued | 2018 | |
dc.description.abstract | Biometric authentication by means of handwritten signatures is a challenging pattern recognition task, which aims to infer a writer model from only a handful of genuine signatures. In order to make it more difficult for a forger to attack the verification system, a promising strategy is to combine different writer models. In this work, we propose to complement a recent structural approach to offline signature verification based on graph edit distance with a statistical approach based on metric learning with deep neural networks. On the MCYT and GPDS benchmark datasets, we demonstrate that combining the structural and statistical models leads to significant improvements in performance, profiting from their complementary properties. | |
dc.event | S+SSPR 2018. IAPR International Workshops on Statistical Techniques in Pattern Recognition (SPR 2018) and Structural and Syntactic Pattern Recognition (SSPR2018) | |
dc.event.end | 2018-08-19 | |
dc.event.start | 2018-08-17 | |
dc.identifier.doi | https://doi.org/10.1007/978-3-319-97785-0_45 | |
dc.identifier.isbn | 978-3-319-97784-3 | |
dc.identifier.isbn | 978-3-319-97785-0 | |
dc.identifier.uri | https://irf.fhnw.ch/handle/11654/42436 | |
dc.language.iso | en | |
dc.publisher | Springer | |
dc.relation.ispartof | Structural, syntactic, and statistical pattern recognition. Joint IAPR International Workshop, S+SSPR 2018, Beijing, China, August 17-19, 2018. Proceedings | |
dc.relation.ispartofseries | Lecture notes in computer science | |
dc.spatial | Cham | |
dc.subject.ddc | 330 - Wirtschaft | |
dc.title | Offline signature verification by combining graph edit distance and triplet networks | |
dc.type | 04B - Beitrag Konferenzschrift | |
dspace.entity.type | Publication | |
fhnw.InventedHere | Yes | |
fhnw.ReviewType | Anonymous ex ante peer review of a complete publication | |
fhnw.affiliation.hochschule | Hochschule für Wirtschaft FHNW | de_CH |
fhnw.affiliation.institut | Institut für Wirtschaftsinformatik | de_CH |
fhnw.openAccessCategory | Closed | |
fhnw.pagination | 470-480 | |
fhnw.publicationState | Published | |
fhnw.seriesNumber | 11004 | |
relation.isAuthorOfPublication | d761e073-1612-4d22-8521-65c01c19f97a | |
relation.isAuthorOfPublication | e83eff11-b557-4fff-985e-1bbb1fd15e0c | |
relation.isAuthorOfPublication.latestForDiscovery | d761e073-1612-4d22-8521-65c01c19f97a |
Dateien
Lizenzbündel
1 - 1 von 1
Kein Vorschaubild vorhanden
- Name:
- license.txt
- Größe:
- 1.36 KB
- Format:
- Item-specific license agreed upon to submission
- Beschreibung: