Determination of weights for multiobjective combinatorial optimization in incident management with an evolutionary algorithm

dc.contributor.authorGachnang, Phillip
dc.contributor.authorEhrenthal, Joachim
dc.contributor.authorTelesko, Rainer
dc.contributor.authorHanne, Thomas
dc.date.accessioned2024-03-19T08:17:12Z
dc.date.available2024-03-19T08:17:12Z
dc.date.issued2023
dc.description.abstractIncident management in railway operations includes dealing with complex and multiobjective planning problems with numerous constraints, usually with incomplete information and under time pressure. An incident should be resolved quickly with minor deviations from the original plans and at acceptable costs. The problem formulation usually includes multiple objectives relevant to a railway company and the employees involved in controlling operations. Still, there is little established knowledge and agreement regarding the relative importance of objectives such as expressed by weights. Due to the difficulties in assessing weights in a multiobjective context directly involving decision makers, we elaborate on the autoconfiguration of weighted fitness functions based on nine objectives used in a related Integer Linear Programming (ILP) problem. Our approach proposes an evolutionary algorithm and tests it on real-world railway incident management data. The proposed method outperforms the baseline, where weights are equally distributed. Thus, the algorithm shows the capability to learn weights in future applications based on the priorities of employees solving railway incidents which is not yet possible due to an insufficient availability of real-life data from incident management. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10339298&tag=1
dc.identifier.doi10.1109/ACCESS.2023.3339128
dc.identifier.issn2169-3536
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/43507
dc.identifier.urihttps://doi.org/10.26041/fhnw-7472
dc.language.isoen
dc.publisherIEEE
dc.relation.ispartofIEEE Access
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.ddc330 - Wirtschaft
dc.titleDetermination of weights for multiobjective combinatorial optimization in incident management with an evolutionary algorithm
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume11
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.openAccessCategoryGold
fhnw.pagination138502-138514
fhnw.publicationStatePublished
relation.isAuthorOfPublication98d19d9f-59f1-47db-a407-a144bb75b2c1
relation.isAuthorOfPublication4ede99f3-075f-49f4-ac50-7ee9389ac82d
relation.isAuthorOfPublication70ff5378-ee4e-400d-aea1-7e129a703719
relation.isAuthorOfPublication35d8348b-4dae-448a-af2a-4c5a4504da04
relation.isAuthorOfPublication.latestForDiscovery98d19d9f-59f1-47db-a407-a144bb75b2c1
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
Determination_of_weights_for_multiobjective_combinatorial_optimization_in_incident_management_with_an_evolutionary_algorithm.pdf
Größe:
1.41 MB
Format:
Adobe Portable Document Format

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: