Towards an assistive and pattern learning-driven process modeling approach

dc.contributor.authorLaurenzi, Emanuele
dc.contributor.authorHinkelmann, Knut
dc.contributor.authorJüngling, Stephan
dc.contributor.authorMontecchiari, Devid
dc.contributor.authorPande, Charuta
dc.contributor.authorMartin, Andreas
dc.contributor.editorMartin, Andreas
dc.contributor.editorHinkelmann, Knut
dc.contributor.editorGerber, Aurona
dc.contributor.editorLenat, Doug
dc.contributor.editorvan Harmelen, Frank
dc.contributor.editorClark, Peter
dc.date.accessioned2024-04-23T12:20:50Z
dc.date.available2024-04-23T12:20:50Z
dc.date.issued2019
dc.description.abstractThe practice of business process modeling not only requires modeling expertise but also significant domain expertise. Bringing the latter into an early stage of modeling contributes to design models that appropriately capture an underlying reality. For this, modeling experts and domain experts need to intensively cooperate, especially when the former are not experienced within the domain they are modeling. This results in a time-consuming and demanding engineering effort. To address this challenge, we propose a process modeling approach that assists domain experts in the creation and adaptation of process models. To get an appropriate assistance, the approach is driven by semantic patterns and learning. Semantic patterns are domain-specific and consist of process model fragments (or end-to-end process models), which are continuously learned from feedback from domain as well as process modeling experts. This enables to incorporate good practices of process modeling into the semantic patterns. To this end, both machine-learning and knowledge engineering techniques are employed, which allow the semantic patterns to adapt over time and thus to keep up with the evolution of process modeling in the different business domains.
dc.description.urihttps://ceur-ws.org/Vol-2350/
dc.eventAAAI 2019 Spring Symposium on Combining Machine Learning with Knowledge Engineering (AAAI-MAKE 2019)
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/42466
dc.identifier.urihttps://doi.org/10.26041/fhnw-6431
dc.language.isoen
dc.relation.ispartofProceedings of the AAAI 2019 Spring Symposium on Combining Machine Learning with Knowledge Engineering (AAAI-MAKE 2019)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.spatialPalo Alto
dc.subject.ddc330 - Wirtschaft
dc.titleTowards an assistive and pattern learning-driven process modeling approach
dc.type04B - Beitrag Konferenzschrift
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaftde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.openAccessCategoryDiamond
fhnw.publicationStatePublished
relation.isAuthorOfPublication4a2b6cad-6ed6-4355-a377-e408a177b079
relation.isAuthorOfPublication6898bec4-c71c-491e-b5f8-2b1cba9cfa00
relation.isAuthorOfPublicationccc10225-9dbf-489d-8ea2-5b512f52637a
relation.isAuthorOfPublication348a0024-d064-47f1-ac4d-e64fabf53c47
relation.isAuthorOfPublication6fa75258-21bd-4090-98cb-b2217a6f234d
relation.isAuthorOfPublication6a3865e7-85dc-41b5-afe3-c834c56fab4e
relation.isAuthorOfPublication.latestForDiscovery348a0024-d064-47f1-ac4d-e64fabf53c47
relation.isEditorOfPublication6a3865e7-85dc-41b5-afe3-c834c56fab4e
relation.isEditorOfPublication6898bec4-c71c-491e-b5f8-2b1cba9cfa00
relation.isEditorOfPublication.latestForDiscovery6a3865e7-85dc-41b5-afe3-c834c56fab4e
Dateien
Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
Laurenzi_Hinkelmann_Juengling_Montecchiari_Pande_Martin_Towards_an_assistive_and_pattern_learning-driven_process_modeling_approach_2019.pdf
Größe:
723.21 KB
Format:
Adobe Portable Document Format
Beschreibung:
Lizenzbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: