POMDME as an alternative pilot fuel for dual-fuel engines. Optical study in a RCEM and application in an automotive size dual-fuel diesel engine

dc.contributor.authorSrna, Aleš
dc.contributor.authorBarro, Christophe
dc.contributor.authorHerrmann, Kai
dc.contributor.authorMöri, Fabio
dc.contributor.authorHutter, Richard
dc.contributor.authorBoulouchos, Konstantinos
dc.date.accessioned2025-06-30T07:40:07Z
dc.date.issued2018-09-10
dc.description.abstractDual-fuel natural gas engines are seen as an attractive solution for simultaneous reduction of pollutant and CO2 emissions while maintaining high engine thermal efficiency. However, engines of this type exhibit a tradeoff between misfire as well as high UHC emissions for small pilot injection amounts and higher emissions of soot and NOX for operation strategies with higher pilot fuel proportion. The aim of this study was to investigate POMDME as an alternative pilot fuel having the potential to mitigate the emissions tradeoff, enabling smokeless combustion due to high degree of oxygenation, and being less prone to misfire due to its higher cetane number. Furthermore, POMDME can be synthetized carbon neutrally.First, characteristics of POMDME ignition in methane/air mixture and the transition into premixed flame propagation were investigated optically in a rapid compression-expansion machine (RCEM) by employing Schlieren and OH* chemiluminescence imaging. A single-hole coaxial injector mounted at the cylinder periphery was used to admit POMDME or n-dodecane as the reference pilot fuel. In the second stage, POMDME was applied as a pilot-fuel in a VW 2 l 4-cylinder industrial Diesel engine modified for dual-fuel operation. Engine performance with POMDME and EN590 Diesel pilot-fuels was compared. In the RCEM, in air, dodecane and POMDME exhibit similar ignition delay times. In methane/air mixtures, ignition of both pilot fuels was deferred with increasing methane content, with stronger influence on POMDME than on dodecane. Indication of pilot-fuel over-mixing was observed for the shortest considered POMDME injections. In the engine experiment, while keeping the total combustion equivalence ratio constant, POMDME was found to have shorter ignition delays than Diesel fuel, attributed to its higher cetane number. At constant engine load using POMDME instead of Diesel pilot fuel, stable operation with lower pilot-fuel energy and mass input was possible along with soot mass reduction to close to zero.
dc.eventSAE 2018 International Powertrains, Fuels & Lubricants Meeting
dc.event.end2018-09-19
dc.event.start2018-09-17
dc.identifier.doi10.4271/2018-01-1734
dc.identifier.issn0148-7191
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/51814
dc.language.isoen
dc.publisherSAE International
dc.relation.ispartofSAE Technical Paper Series
dc.spatialHeidelberg
dc.subject.ddc620 - Ingenieurwissenschaften und Maschinenbau
dc.subject.ddc660 - Technische Chemie
dc.subject.ddc530 - Physik
dc.titlePOMDME as an alternative pilot fuel for dual-fuel engines. Optical study in a RCEM and application in an automotive size dual-fuel diesel engine
dc.type04B - Beitrag Konferenzschrift
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Technik und Umwelt FHNWde_CH
fhnw.affiliation.institutInstitut für Thermo- und Fluid-Engineeringde_CH
fhnw.openAccessCategoryClosed
fhnw.publicationStatePublished
relation.isAuthorOfPublicationa9126497-808d-4e16-a262-b487cce0f979
relation.isAuthorOfPublication.latestForDiscoverya9126497-808d-4e16-a262-b487cce0f979
Dateien

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
2.66 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: