A decision-support approach under uncertainty for evaluating reverse logistics capabilities of healthcare providers in Iran
Vorschaubild nicht verfügbar
Autor:innen
Autor:in (Körperschaft)
Publikationsdatum
2020
Typ der Arbeit
Studiengang
Typ
01A - Beitrag in wissenschaftlicher Zeitschrift
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Journal of Enterprise Information Management
Themenheft
DOI der Originalpublikation
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
33
Ausgabe / Nummer
5
Seiten / Dauer
991-1022
Patentnummer
Verlag / Herausgebende Institution
Emerald
Verlagsort / Veranstaltungsort
Bingley
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
Purpose – This paper aims to assess and prioritize manufacturing companies in the healthcare industry based on critical success factors (CSFs) of their reverse logistics (RL). The research involves seven medical device companies located in the Tehran Province, Iran.
Design/methodology/approach – To identify and prioritize companies based on CSFs of RL, the study proposes a three-phase decision-making framework that integrates the Delphi method, the best-worst method (BWM) and the Additive Ratio Assessment (ARAS) method with Z-numbers. The weights required for this method are obtained by a variant of the BWM based on Z-numbers, denoted as Z-numbers Best-Worst Method, or ZBWM. Since decision-makers face an uncertain environment, Z-numbers, which are a kind of fuzzy numbers, are applied.
Findings – First, after customizing CSFs by the Delphi method and obtaining 15 CSFs of RL, these are ranked by the hybrid BWM-ARAS method with Z-numbers. Results reveal which company appears to perform best with respect to their RL implementations. Based on this result, healthcare device companies should choose the highest priority company based on the selected RL CSFs and results from using the BWM-ARAS method with Z-numbers.
Originality/value - The contribution of this paper is using a hybrid ARAS-BWM method based on Z-numbers. Each of these methods has some merits compared to other similar methods. The combination of these methods contributes a new approach for prioritizing companies based on RL CSFs with high accuracy and reliability.
Schlagwörter
Fachgebiet (DDC)
330 - Wirtschaft
Veranstaltung
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
1741-0398
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Publikationsstatus
Veröffentlicht
Begutachtung
Peer-Review der ganzen Publikation
Open Access-Status
Closed
Lizenz
Zitation
YAZDI, Amir Karbassi, Peter FERNANDES WANKE, Thomas HANNE und Eleonora BOTTANI, 2020. A decision-support approach under uncertainty for evaluating reverse logistics capabilities of healthcare providers in Iran. Journal of Enterprise Information Management. 2020. Bd. 33, Nr. 5, S. 991–1022. DOI 10.1108/jeim-09-2019-0299. Verfügbar unter: https://irf.fhnw.ch/handle/11654/42931