Computational strategies for dissecting the high-dimensional complexity of adaptive immune repertoires
dc.contributor.author | Miho, Enkelejda | |
dc.contributor.author | Yermanos, Alexander | |
dc.contributor.author | Weber, Cédric R. | |
dc.contributor.author | Berger, Christoph T. | |
dc.contributor.author | Reddy, Sai T. | |
dc.contributor.author | Greiff, Victor | |
dc.date.accessioned | 2024-08-23T11:59:14Z | |
dc.date.available | 2024-08-23T11:59:14Z | |
dc.date.issued | 2018 | |
dc.description.abstract | The adaptive immune system recognizes antigens via an immense array of antigen binding antibodies and T-cell receptors, the immune repertoire. The interrogation of immune repertoires is of high relevance for understanding the adaptive immune response in disease and infection (e.g., autoimmunity, cancer, HIV). Adaptive immune receptor repertoire sequencing (AIRR-seq) has driven the quantitative and molecular-level profiling of immune repertoires, thereby revealing the high-dimensional complexity of the immune receptor sequence landscape. Several methods for the computational and statistical analysis of large-scale AIRR-seq data have been developed to resolve immune repertoire complexity and to understand the dynamics of adaptive immunity. Here, we review the current research on (i) diversity, (ii) clustering and network, (iii) phylogenetic, and (iv) machine learning methods applied to dissect, quantify, and compare the architecture, evolution, and specificity of immune repertoires. We summarize outstanding questions in computational immunology and propose future directions for systems immunology toward coupling AIRR-seq with the computational discovery of immunotherapeutics, vaccines, and immunodiagnostics. | |
dc.identifier.doi | 10.3389/fimmu.2018.00224 | |
dc.identifier.issn | 1664-3224 | |
dc.identifier.uri | https://irf.fhnw.ch/handle/11654/46911 | |
dc.identifier.uri | https://doi.org/10.26041/fhnw-9936 | |
dc.language.iso | en | |
dc.publisher | Frontiers Research Foundation | |
dc.relation.ispartof | Frontiers in Immunology | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject.ddc | 600 - Technik, Medizin, angewandte Wissenschaften | |
dc.title | Computational strategies for dissecting the high-dimensional complexity of adaptive immune repertoires | |
dc.type | 01A - Beitrag in wissenschaftlicher Zeitschrift | |
dc.volume | 9 | |
dspace.entity.type | Publication | |
fhnw.InventedHere | No | |
fhnw.ReviewType | Anonymous ex ante peer review of a complete publication | |
fhnw.affiliation.hochschule | Hochschule für Life Sciences FHNW | de_CH |
fhnw.affiliation.institut | Institut für Medizintechnik und Medizininformatik | de_CH |
fhnw.openAccessCategory | Gold | |
fhnw.publicationState | Published | |
relation.isAuthorOfPublication | 30aa6b4f-8d02-4f33-8551-6261e7383b23 | |
relation.isAuthorOfPublication | 3d39049f-ff63-4e50-949b-ee67f7dcb763 | |
relation.isAuthorOfPublication.latestForDiscovery | 30aa6b4f-8d02-4f33-8551-6261e7383b23 |
Dateien
Originalbündel
1 - 1 von 1
- Name:
- Computational strategies for dissecting the high-dimensional complexity.pdf
- Größe:
- 636.68 KB
- Format:
- Adobe Portable Document Format
Lizenzbündel
1 - 1 von 1
Kein Vorschaubild vorhanden
- Name:
- license.txt
- Größe:
- 2.66 KB
- Format:
- Item-specific license agreed upon to submission
- Beschreibung: