Gaussian relevance vector MapReduce based annealed Glowworm optimization for big medical data scheduling

dc.contributor.authorPatan, Rizwan
dc.contributor.authorKallam, Suresh
dc.contributor.authorGandomi, Amir H.
dc.contributor.authorHanne, Thomas
dc.contributor.authorRamachandran, Manikandan
dc.date.accessioned2024-03-19T07:38:55Z
dc.date.available2024-03-19T07:38:55Z
dc.date.issued2021
dc.description.abstractVarious big-data analytics tools and techniques have been developed for handling massive amounts of data in the healthcare sector. However, scheduling is a significant problem to be solved in smart healthcare applications to provide better quality healthcare services and improve the efficiency of related processes when considering large medical files. For this purpose, a new hybrid model called Gaussian Relevance Vector MapReduce-based Annealed Glowworm Optimization Scheduling (GRVM-AGS) was designed to improve the balancing of large medical data files between different physicians with higher scheduling efficiency and minimal time. First, a GRVM model was developed for the predictive analysis of input medical data. This model reduces the storage complexity of large medical data analysis by means of eliminating unwanted patient information and predicts the disease class with help of a Gaussian kernel function. Afterwards, GRVM performs AGS to schedule the efficient workloads among multiple datacenters based on the luciferin value in the smart healthcare environment with reduced scheduling time. Through computational experiments, we demonstrate that GRVM-AGS increases the scheduling efficiency and reduces the scheduling time of large medical data analysis compared to state-of-the-art approaches.
dc.identifier.doi10.1080/01605682.2021.1960908
dc.identifier.issn1476-9360
dc.identifier.issn0160-5682
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/43143
dc.identifier.urihttps://doi.org/10.26041/fhnw-7108
dc.issue10
dc.language.isoen
dc.publisherTaylor & Francis
dc.relation.ispartofJournal of the Operational Research Society
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.spatialLondon
dc.subject.ddc330 - Wirtschaft
dc.titleGaussian relevance vector MapReduce based annealed Glowworm optimization for big medical data scheduling
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume73
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaftde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.openAccessCategoryHybrid
fhnw.pagination2204-2215
fhnw.publicationStatePublished
relation.isAuthorOfPublication35d8348b-4dae-448a-af2a-4c5a4504da04
relation.isAuthorOfPublication.latestForDiscovery35d8348b-4dae-448a-af2a-4c5a4504da04
Dateien
Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
Gaussian_relevance_vector_MapReduce-based_annealed_Glowworm_optimization_for_big_medical_data_scheduling.pdf
Größe:
2.23 MB
Format:
Adobe Portable Document Format
Beschreibung:
Lizenzbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: