Solving the explainable AI conundrum by bridging clinicians’ needs and developers’ goals

dc.contributor.authorBienefeld, Nadine
dc.contributor.authorBoss, Jens Michael
dc.contributor.authorLüthy, Rahel
dc.contributor.authorBrodbeck, Dominique
dc.contributor.authorAzzati, Jan
dc.contributor.authorBlaser, Mirco
dc.contributor.authorWillms, Jan
dc.contributor.authorKeller, Emanuela
dc.date.accessioned2023-10-10T08:28:58Z
dc.date.available2023-10-10T08:28:58Z
dc.date.issued2023-05-22
dc.description.abstractExplainable artificial intelligence (XAI) has emerged as a promising solution for addressing the implementation challenges of AI/ML in healthcare. However, little is known about how developers and clinicians interpret XAI and what conflicting goals and requirements they may have. This paper presents the findings of a longitudinal multi-method study involving 112 developers and clinicians co-designing an XAI solution for a clinical decision support system. Our study identifies three key differences between developer and clinician mental models of XAI, including opposing goals (model interpretability vs. clinical plausibility), different sources of truth (data vs. patient), and the role of exploring new vs. exploiting old knowledge. Based on our findings, we propose design solutions that can help address the XAI conundrum in healthcare, including the use of causal inference models, personalized explanations, and ambidexterity between exploration and exploitation mindsets. Our study highlights the importance of considering the perspectives of both developers and clinicians in the design of XAI systems and provides practical recommendations for improving the effectiveness and usability of XAI in healthcare.
dc.identifier.doi10.1038/s41746-023-00837-4
dc.identifier.issn2398-6352
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/38086
dc.identifier.urihttps://doi.org/10.26041/fhnw-5438
dc.issue1
dc.language.isoen
dc.publisherNature
dc.relation.ispartofnpj Digital Medicine
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc600 - Technik, Medizin, angewandte Wissenschaften
dc.titleSolving the explainable AI conundrum by bridging clinicians’ needs and developers’ goals
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume6
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Life Sciencesde_CH
fhnw.affiliation.institutInstitut für Medizintechnik und Medizininformatikde_CH
fhnw.openAccessCategoryGold
fhnw.publicationStatePublished
relation.isAuthorOfPublication46b27190-143a-44d0-9fd0-3359b16f4d25
relation.isAuthorOfPublication25d5dae6-204b-4b35-b422-d856d3ba2796
relation.isAuthorOfPublication08ecccdf-5adc-46ef-baa8-1f912794204e
relation.isAuthorOfPublication68a22708-9c98-4ecf-82bd-a8aaa25ca904
relation.isAuthorOfPublication.latestForDiscovery46b27190-143a-44d0-9fd0-3359b16f4d25
Dateien
Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
s41746-023-00837-4.pdf
Größe:
1.58 MB
Format:
Adobe Portable Document Format
Beschreibung:
Lizenzbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: