Multilingual Sentiment Analysis for a Swiss Gig

dc.accessRightsAnonymous
dc.audienceScience
dc.contributor.authorPustulka, Elzbieta
dc.contributor.authorHanne, Thomas
dc.contributor.authorBlumer, Eliane
dc.contributor.authorFrieder, Manuel
dc.contributor.editorWong, Ka Chun
dc.date.accessioned2019-08-19T07:04:35Z
dc.date.available2019-08-19T07:04:35Z
dc.date.issued2018-08-27
dc.description.abstractWe are developing a multilingual sentiment analysis solution for a Swiss human resource company working in the gig sector. To examine the feasibility of using machine learning in this context, we carried out three sentiment assignment experiments. As test data we use 963 hand annotated comments made by workers and their employers. Our baseline, machine learning (ML) on Twitter, had an accuracy of 0.77 with the Matthews correlation coefficient (MCC) of 0.32. A hybrid solution, Semantria from Lexalytics, had an accuracy of 0.8 with MCC of 0.42, while a tenfold cross-validation on the gig data yielded the accuracy of 0.87, F1 score 0.91, and MCC 0.65. Our solution did not require language assignment or stemming and used standard ML software. This shows that with more training data and some feature engineering, an industrial strength solution to this problem should be possible.
dc.event6th International Symposium on Computational and Business Intelligence (ISCBI 2018)
dc.event.end2018-08-29
dc.event.start2018-08-27
dc.identifier.doihttps://doi.org/10.1109/iscbi.2018.00028
dc.identifier.urihttp://hdl.handle.net/11654/27841
dc.identifier.urihttps://doi.org/10.26041/fhnw-1765
dc.language.isoenen_US
dc.relation.ispartof6th International Symposium on Computational and Business Intelligence (ISCBI 2018)
dc.spatialBasel
dc.subjectsentiment analysisen_US
dc.subjectmachine learning applicationen_US
dc.subjectnatural language processingen_US
dc.subjectgig economyen_US
dc.subject.ddc330 - Wirtschaft
dc.titleMultilingual Sentiment Analysis for a Swiss Gig
dc.type04B - Beitrag Konferenzschrift
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.IsStudentsWorkno
fhnw.PublishedSwitzerlandYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.publicationStatePublished
relation.isAuthorOfPublication3e7f2a0a-692e-4652-b305-7a7e19e011de
relation.isAuthorOfPublication35d8348b-4dae-448a-af2a-4c5a4504da04
relation.isAuthorOfPublicationc2dd8ca7-944a-4a6f-a2ed-21b9ce2792ba
relation.isAuthorOfPublicationd4bfa5e7-f565-4b30-8606-23bafb34650e
relation.isAuthorOfPublication.latestForDiscovery35d8348b-4dae-448a-af2a-4c5a4504da04
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
PustHannBlumFrie_ISCBI2018.pdf
Größe:
510.7 KB
Format:
Adobe Portable Document Format
Beschreibung: