Apical medium flowiInfluences the morphology and physiology of human proximal tubular cells in a microphysiological system

dc.accessRightsAnonymous*
dc.contributor.authorSpecioso, Gabriele
dc.contributor.authorBovard, David
dc.contributor.authorZanetti, Filippo
dc.contributor.authorMaranzano, Fabio
dc.contributor.authorMerg, Céline
dc.contributor.authorSandoz, Antonin
dc.contributor.authorTitz, Bjoern
dc.contributor.authorDalcanale, Federico
dc.contributor.authorHoeng, Julia
dc.contributor.authorRenggli, Kasper
dc.contributor.authorSuter-Dick, Laura
dc.date.accessioned2023-02-16T11:15:22Z
dc.date.available2023-02-16T11:15:22Z
dc.date.issued2022-09-30
dc.description.abstractThere is a lack of physiologically relevant in vitro human kidney models for disease modelling and detecting drug-induced effects given the limited choice of cells and difficulty implementing quasi-physiological culture conditions. We investigated the influence of fluid shear stress on primary human renal proximal tubule epithelial cells (RPTECs) cultured in the micro-physiological Vitrofluid device. This system houses cells seeded on semipermeable membranes and can be connected to a regulable pump that enables controlled, unidirectional flow. After 7 days in culture, RPTECs maintained physiological characteristics such as barrier integrity, protein uptake ability, and expression of specific transporters (e.g., aquaporin-1). Exposure to constant apical side flow did not cause cytotoxicity, cell detachment, or intracellular reactive oxygen species accumulation. However, unidirectional flow profoundly affected cell morphology and led to primary cilia lengthening and alignment in the flow direction. The dynamic conditions also reduced cell proliferation, altered plasma membrane leakiness, increased cytokine secretion, and repressed histone deacetylase 6 and kidney injury molecule 1 expression. Cells under flow also remained susceptible to colistin-induced toxicity. Collectively, the results suggest that dynamic culture conditions in the Vitrofluid system promote a more differentiated phenotype in primary human RPTECs and represent an improved in vitro kidney model.en_US
dc.identifier.doi10.3390/bioengineering9100516
dc.identifier.issn1097-0290
dc.identifier.issn0006-3592
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/34627
dc.identifier.urihttps://doi.org/10.26041/fhnw-4641
dc.issue10en_US
dc.language.isoenen_US
dc.publisherMDPIen_US
dc.relation.ispartofBioengineeringen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.subjectMicrofluidsen_US
dc.subjectOrgan-on chipen_US
dc.subjectMicro-physiological systemsen_US
dc.subjectCiliaen_US
dc.subjectKidneyen_US
dc.subject.ddc600 - Technik, Medizin, angewandte Wissenschaftenen_US
dc.titleApical medium flowiInfluences the morphology and physiology of human proximal tubular cells in a microphysiological systemen_US
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume9en_US
dspace.entity.typePublication
fhnw.InventedHereYesen_US
fhnw.IsStudentsWorknoen_US
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publicationen_US
fhnw.affiliation.hochschuleHochschule für Life Sciences FHNWde_CH
fhnw.affiliation.institutInstitut für Chemie und Bioanalytikde_CH
fhnw.openAccessCategoryGolden_US
fhnw.pagination1-17en_US
fhnw.publicationStatePublisheden_US
relation.isAuthorOfPublication74201642-ffc5-428f-9831-5fd66792a7d9
relation.isAuthorOfPublication70f8b4cc-4dca-4c9a-b04d-7e5fec8effb7
relation.isAuthorOfPublication37292405-e311-4093-a2e7-9a72a2511114
relation.isAuthorOfPublication.latestForDiscovery37292405-e311-4093-a2e7-9a72a2511114
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
bioengineering-09-00516.pdf
Größe:
3.07 MB
Format:
Adobe Portable Document Format
Beschreibung:

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
1.37 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: