Computational Intelligence Aided Aircraft Maintenance Planning

Lade...
Vorschaubild
Autor:innen
Autor:in (Körperschaft)
Publikationsdatum
2018
Typ der Arbeit
Master
Studiengang
Typ
11 - Studentische Arbeit
Herausgeber:innen
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
Themenheft
DOI der Originalpublikation
Link
Reihe / Serie
Reihennummer
Jahrgang / Band
Ausgabe / Nummer
Seiten / Dauer
Patentnummer
Verlag / Herausgebende Institution
Hochschule für Wirtschaft FHNW
Verlagsort / Veranstaltungsort
Olten
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
The aviation industry is suffering under heavy price erosion, and airlines do their best to remain competitive and profitable. Airlines can only earn money if their aircraft are flying. Therefore an aircraft undergoing maintenance is not profitable and only causes costs. In order to reduce maintenance time, a good maintenance plan is mandatory. To find the best maintenance schedule and improve efficiency digital tools become more and more popular. This thesis introduced a new integrated maintenance approach by combining the aircraft routing or tail assignment problem with the maintenance task scheduling. Flying hours and performed flight legs heavily influence the latest possible maintenance date of a specific task. The more an aircraft flies, the earlier the task has to be performed. This thesis introduces a solution to maximise the quality of the maintenance plan while ensuring, that all scheduled flights of an airline can be served by an aircraft. The concept has been implemented based on a hybrid-metaheuristic approach combiningsimulated annealing (aircraft routing) and genetic algorithm (maintenance task scheduling)using multiple criteria to assess the fitness of the different calculated solutions. For evaluation reasons, the solution directly integrated into the maintenance software AMOS. The proposed approach is proven to work with positive feedback from experts.
Schlagwörter
Fachgebiet (DDC)
Projekt
Veranstaltung
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
Enddatum der Konferenz
Datum der letzten Prüfung
ISBN
ISSN
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Publikationsstatus
Begutachtung
Open Access-Status
Lizenz
Zitation
Poy, M. (2018). Computational Intelligence Aided Aircraft Maintenance Planning [Hochschule für Wirtschaft FHNW]. https://irf.fhnw.ch/handle/11654/39858