Parametric modelling approach to reconstructing architectural indoor spaces from point clouds

dc.accessRightsAnonymous*
dc.contributor.authorWahbeh, Wissam
dc.contributor.editorWahbeh, Wissam
dc.date.accessioned2023-06-20T11:55:19Z
dc.date.available2022-04-22T06:18:05Z
dc.date.available2023-06-20T11:55:19Z
dc.date.issued2021-06-30
dc.description.abstractAbstract. In this paper, some outcomes of a research project which aims to introduce automation to speed up modelling of architectural spaces based on point clouds are presented. The main objective of the research is to replace some manual parametric modelling steps with automatic processes to obtain editable models in BIM-ready software and not to generate non-parametric IFC (Industry Foundation Classes) models. An approach of automation using visual programming for interior wall modelling based on point clouds is presented. The pipeline and the different concepts represented in this paper are applicable using different programming languages but here the use of Rhinoceros as a modelling software and its open-source visual programming extension "Grasshopper" is intentional as it is in common use for parametric modelling and generative design in architectural practice. In this research, it is assumed that there is a predominance of three mutually orthogonal directions of the walls in the interior spaces to be analysed, which is the case of most indoor spaces.en_US
dc.description.urihttps://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLIII-B4-2021/251/2021/en_US
dc.eventXXIV ISPRS Congresen_US
dc.event.end2021-07-09
dc.event.start2021-07-05
dc.identifier.doi10.5194/isprs-archives-XLIII-B4-2021-251-2021
dc.identifier.issn2194-9034
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/33444
dc.identifier.urihttps://doi.org/10.26041/fhnw-4947
dc.language.isoenen_US
dc.publisherISPRSen_US
dc.relation.ispartofThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciencesen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.spatialMuttenzen_US
dc.subjectParametric Modellingen_US
dc.subjectPoint Clouden_US
dc.subjectBIMen_US
dc.subjectIndoor Modellingen_US
dc.subjectAs-Built Reconstructionen_US
dc.subjectFloor planen_US
dc.subjectModelling Automationen_US
dc.subjectScan-to-BIMen_US
dc.subject.ddc624 - Ingenieurbau und Umwelttechniken_US
dc.titleParametric modelling approach to reconstructing architectural indoor spaces from point cloudsen_US
dc.type04B - Beitrag Konferenzschrift*
dc.volumeXLIII-B4-2021en_US
dspace.entity.typePublication
fhnw.InventedHereYesen_US
fhnw.IsStudentsWorknoen_US
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publicationen_US
fhnw.affiliation.hochschuleHochschule für Architektur, Bau und Geomatikde_CH
fhnw.affiliation.institutInstitut Digitales Bauende_CH
fhnw.openAccessCategoryDiamonden_US
fhnw.pagination251-257en_US
fhnw.publicationStatePublisheden_US
relation.isAuthorOfPublicationa9f64384-ab8c-404c-8601-f76efa850ab3
relation.isAuthorOfPublication.latestForDiscoverya9f64384-ab8c-404c-8601-f76efa850ab3
relation.isEditorOfPublicationa9f64384-ab8c-404c-8601-f76efa850ab3
relation.isEditorOfPublication.latestForDiscoverya9f64384-ab8c-404c-8601-f76efa850ab3
Dateien
Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
isprs-archives-XLIII-B4-2021-251-2021.pdf
Größe:
4.34 MB
Format:
Adobe Portable Document Format
Beschreibung:
Lizenzbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
1.37 KB
Format:
Item-specific license agreed upon to submission
Beschreibung:

Versionsgeschichte

Gerade angezeigt 1 - 2 von 2
VersionDatumZusammenfassung
2*
2023-06-19 12:02:51
Volltext und Lizenz
2022-04-22 06:18:05
* Ausgewählte Version