Atlas Optimization for Deep Brain Stimulation
Vorschaubild nicht verfügbar
Autor:innen
Autor:in (Körperschaft)
Publikationsdatum
30.11.2020
Typ der Arbeit
Studiengang
Typ
04B - Beitrag Konferenzschrift
Herausgeber:innen
Jarm, Tomaz
Cvetkoska, Aleksandra
Mahnič-Kalamiza, Samo
Miklavcic, Damijan
Herausgeber:in (Körperschaft)
Betreuer:in
Übergeordnetes Werk
EMBEC 2020: 8th European Medical and Biological Engineering
Themenheft
DOI der Originalpublikation
Reihe / Serie
Reihennummer
Jahrgang / Band
80
Ausgabe / Nummer
Seiten / Dauer
130-142
Patentnummer
Verlag / Herausgebende Institution
IFMBE
Verlagsort / Veranstaltungsort
Portorož
Auflage
Version
Programmiersprache
Abtretungsempfänger:in
Praxispartner:in/Auftraggeber:in
Zusammenfassung
Abstract : Electrical stimulation of the deep parts of the brain is the standard answer for patients subject to drug-refractory movement disorders. Collective analysis of data collected during surgeries are crucial in order to provide more systematic planning assistance and understanding the physiological mechanisms of action. To that end, the process of normalizing anatomies captured with Magnetic Resonance imaging across patients is a key component. In this work, we present the optimization of a workflow designed to create group-specific anatomical templates: a group template is refined iteratively using the results of successive non-linear image registrations with refinement steps in the in the basal-ganglia area. All non-linear registrations were executed using the Advanced Normalization Tools (ANTs) and the quality of the nor-malization was measured using spacial overlap of anatomical structures manually delineated during the planning of the surgery. The parameters of the workflow evaluated were: the use of multiple modalities sequentially or together during each registration to the template, the number of iterations in the template creation and the fine settings of the non-linear registration tool. Using the T1 and white matter attenuated inverse recovery modalities (WAIR) together produced the best results, especially in the center of the brain. The optimal numbers of iterations of the template creation were higher than those from the literature and our previous works. Finally, the setting of the non-linear registration tool that improved results the most was the activation of the registration with the native voxel sizes of images, as opposed to down-sampled version of the images. The normalization process was optimized over our previous study and allowed to obtain the best possible anatomical nor-malization of this specific group of patient. It will be used to summarize and analyze peri-operative measurements during test stimulation. The aim is that the conclusions obtained from this analysis will be useful for assistance during the planning of new surgeries.
Schlagwörter
Movement disorders, Registration, Optimisation, Atlas
Fachgebiet (DDC)
Veranstaltung
Startdatum der Ausstellung
Enddatum der Ausstellung
Startdatum der Konferenz
29.11.2020
Enddatum der Konferenz
03.12.2020
Datum der letzten Prüfung
ISBN
ISSN
Sprache
Englisch
Während FHNW Zugehörigkeit erstellt
Ja
Zukunftsfelder FHNW
Publikationsstatus
Veröffentlicht
Begutachtung
Keine Begutachtung
Open Access-Status
Lizenz
Zitation
VOGEL, Dorian, Karin WARDELL, Jérôme COSTE, Jean-Jaques LEMAIRE und Simone HEMM-ODE, 2020. Atlas Optimization for Deep Brain Stimulation. In: Tomaz JARM, Aleksandra CVETKOSKA, Samo MAHNIČ-KALAMIZA und Damijan MIKLAVCIC (Hrsg.), EMBEC 2020: 8th European Medical and Biological Engineering. Portorož: IFMBE. 30 November 2020. S. 130–142. Verfügbar unter: https://irf.fhnw.ch/handle/11654/32427