Windowed state-space filters for signal detection and separation

dc.contributor.authorWildhaber, Reto
dc.contributor.authorZalmai, Nour
dc.contributor.authorJacomet, Marcel
dc.contributor.authorLoeliger, Hans-Andrea
dc.date.accessioned2024-08-13T10:06:59Z
dc.date.available2024-08-13T10:06:59Z
dc.date.issued2018
dc.description.abstractThis paper introduces a toolbox for model-based detection, separation, and reconstruction of signals that is especially suited for biomedical signals, such as electrocardiograms (ECGs) or electromyograms (EMGs). The modeling is based on autonomous linear state space models (LSSMs), which are localized with flexible windows. The models are fit to observations by minimizing the squared error while the use of LSSMs leads to efficient recursive error computations and minimizations. Multisection windows enable complex models, and per-sample weights enable multistage processing or adaptive smoothing. This paper is motivated by, and intended for, practical applications, for which several examples and tabulated cost computations are given.
dc.identifier.doi10.1109/tsp.2018.2833804
dc.identifier.issn1053-587X
dc.identifier.issn1941-0476
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/46823
dc.issue14
dc.language.isoen
dc.publisherIEEE
dc.relation.ispartofIEEE Transactions on Signal Processing
dc.titleWindowed state-space filters for signal detection and separation
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume66
dspace.entity.typePublication
fhnw.InventedHereNo
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Life Sciencesde_CH
fhnw.affiliation.institutInstitut für Medizintechnik und Medizininformatikde_CH
fhnw.openAccessCategoryClosed
fhnw.pagination3768-3783
fhnw.publicationStatePublished
relation.isAuthorOfPublication66894b38-407a-46f1-9e66-f573a64bf357
relation.isAuthorOfPublication.latestForDiscovery66894b38-407a-46f1-9e66-f573a64bf357
Dateien
Lizenzbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
2.66 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: