Author Correction. The dengue-specific immune response and antibody identification with machine learning

dc.contributor.authorNatali, Eriberto Noel
dc.contributor.authorHorst, Alexander
dc.contributor.authorMeier, Patrick
dc.contributor.authorGreiff, Victor
dc.contributor.authorNuvolone, Mario
dc.contributor.authorBabrak, Lmar Marie
dc.contributor.authorFink, Katja
dc.contributor.authorMiho, Enkelejda
dc.date.accessioned2024-08-16T09:02:24Z
dc.date.available2024-08-16T09:02:24Z
dc.date.issued2024-01-20
dc.description.abstractDengue virus poses a serious threat to global health and there is no specific therapeutic for it. Broadly neutralizing antibodies recognizing all serotypes may be an effective treatment. High-throughput adaptive immune receptor repertoire sequencing (AIRR-seq) and bioinformatic analysis enable in-depth understanding of the B-cell immune response. Here, we investigate the dengue antibody response with these technologies and apply machine learning to identify rare and underrepresented broadly neutralizing antibody sequences. Dengue immunization elicited the following signatures on the antibody repertoire: (i) an increase of CDR3 and germline gene diversity; (ii) a change in the antibody repertoire architecture by eliciting power-law network distributions and CDR3 enrichment in polar amino acids; (iii) an increase in the expression of JNK/Fos transcription factors and ribosomal proteins. Furthermore, we demonstrate the applicability of computational methods and machine learning to AIRR-seq datasets for neutralizing antibody candidate sequence identification. Antibody expression and functional assays have validated the obtained results.
dc.identifier.doi10.1038/s41541-024-00820-4
dc.identifier.issn2059-0105
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/46899
dc.identifier.urihttps://doi.org/10.26041/fhnw-9925
dc.issue16
dc.language.isoen
dc.publisherNature
dc.relation.ispartofnpj Vaccines
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc600 - Technik, Medizin, angewandte Wissenschaften
dc.titleAuthor Correction. The dengue-specific immune response and antibody identification with machine learning
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume9
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Life Sciences FHNWde_CH
fhnw.affiliation.institutInstitut für Medizintechnik und Medizininformatikde_CH
fhnw.openAccessCategoryGold
fhnw.publicationStatePublished
relation.isAuthorOfPublication360cb962-ef17-4d00-a10d-79c3bde2a8d8
relation.isAuthorOfPublication3d39049f-ff63-4e50-949b-ee67f7dcb763
relation.isAuthorOfPublication30aa6b4f-8d02-4f33-8551-6261e7383b23
relation.isAuthorOfPublication.latestForDiscovery360cb962-ef17-4d00-a10d-79c3bde2a8d8
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
author_correction.pdf
Größe:
392.57 KB
Format:
Adobe Portable Document Format

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
2.66 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: