From machine learning to federated knowledge systems. Current challenges and future architectural directions for cybersecurity applications

dc.contributor.authorHärer, Felix
dc.contributor.authorAgostinis, Noah
dc.contributor.editorLau, Adela
dc.contributor.editorTallón-Ballesteros, Antonio J.
dc.date.accessioned2026-01-07T15:02:38Z
dc.date.issued2025
dc.description.abstractMachine learning (ML) is foundational to cybersecurity today, underpinning critical applications such as intrusion detection systems. Despite their widespread adoption, however, established ML approaches are beginning to show critical limitations in handling evolving cyberthreats. In this paper, we (1.) conduct a data-driven analysis of ML for intrusion detection to understand and demonstrate current limitations, (2.) discuss the literature and contextualize the findings, and (3.) identify and outline architectural directions for advancing local ML to federated knowledge systems for cybersecurity applications. The analysis results indicate significant challenges within established systems, notably in defining normal behavior, high false alarm rates, and detection rates. These shortcomings highlight intrinsic constraints of localized ML approaches, as exemplified in intrusion detection and beyond. Toward addressing these issues, the properties of a federated knowledge system architecture can provide distributed data inputs rather than siloed sources, data sharing, and federated learning to derive widely distributed, structured knowledge bases.
dc.description.urihttp://2025.dmiconf.org/
dc.eventThe 4th International Conference on Digitalization and Management Innovation (DMI2025)
dc.event.end2025-07-09
dc.event.start2025-07-07
dc.identifier.doi10.3233/FAIA250724
dc.identifier.isbn978-1-64368-627-1
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/54781
dc.identifier.urihttps://doi.org/10.26041/fhnw-14791
dc.language.isoen
dc.publisherIOS Press
dc.relation.ispartofDigitalization and Management Innovation IV. Proceedings of DMI 2025, Hong Kong, 7-9 July 2025
dc.relation.ispartofseriesFrontiers in Artificial Intelligence and Applications
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.spatialHong Kong
dc.subject.ddc330 - Wirtschaft
dc.titleFrom machine learning to federated knowledge systems. Current challenges and future architectural directions for cybersecurity applications
dc.type04B - Beitrag Konferenzschrift
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of an abstract
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.openAccessCategoryGold
fhnw.pagination241-248
fhnw.publicationStatePublished
fhnw.seriesNumber412
relation.isAuthorOfPublication583fa817-bc30-430c-a8a2-c676c634bf07
relation.isAuthorOfPublication.latestForDiscovery583fa817-bc30-430c-a8a2-c676c634bf07
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
Härer_Agostinis_2025_DMI 2025.pdf
Größe:
182.61 KB
Format:
Adobe Portable Document Format

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
license.txt
Größe:
2.66 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: