Intelligent Document Filing System for Enhanced Efficiency
| dc.contributor.author | Ledermann, Stefan | |
| dc.contributor.mentor | 4b89e271-f507-401b-84e1-a0635e2bb505 | |
| dc.date.accessioned | 2025-12-15T13:39:29Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | This thesis addresses the inefficiencies in traditional document management systems (DMS), such as SharePoint, which often hinder project teams due to slow document retrieval, inconsistent tagging, and limited workflow automation. The proposed solution is a Minimum Viable Product (MVP) that integrates Artificial Intelligence (AI), Power Automate, and Power BI to enhance document classification, retrieval, and workflow efficiency. The MVP aims to increase productivity, reduce project delays, and optimize team collaboration by improving these processes. | |
| dc.identifier.uri | https://irf.fhnw.ch/handle/11654/54850 | |
| dc.language.iso | en | |
| dc.publisher | Hochschule für Wirtschaft FHNW | |
| dc.spatial | Olten | |
| dc.subject.ddc | 330 - Wirtschaft | |
| dc.title | Intelligent Document Filing System for Enhanced Efficiency | |
| dc.type | 11 - Studentische Arbeit | |
| dspace.entity.type | Publication | |
| fhnw.InventedHere | Yes | |
| fhnw.StudentsWorkType | Master | |
| fhnw.affiliation.hochschule | Hochschule für Wirtschaft FHNW | de_CH |
| fhnw.affiliation.institut | Master of Science | de_CH |