Analyzing microbial communities and their biodegradation of multiple pharmaceuticals in membrane bioreactors

Loading...
Thumbnail Image
Author (Corporation)
Publication date
12.07.2023
Typ of student thesis
Course of study
Type
01A - Journal article
Editors
Editor (Corporation)
Supervisor
Parent work
Applied Microbiology and Biotechnology
Special issue
DOI of the original publication
Link
Series
Series number
Volume
107
Issue / Number
Pages / Duration
5545–5554
Patent number
Publisher / Publishing institution
Springer
Place of publication / Event location
Edition
Version
Programming language
Assignee
Practice partner / Client
Abstract
Abstract Pharmaceuticals are of concern to our planet and health as they can accumulate in the environment. The impact of these biologically active compounds on ecosystems is hard to predict, and information on their biodegradation is necessary to establish sound risk assessment. Microbial communities are promising candidates for the biodegradation of pharmaceuticals such as ibuprofen, but little is known yet about their degradation capacity of multiple micropollutants at higher concentrations (100 mg/L). In this work, microbial communities were cultivated in lab-scale membrane bioreactors (MBRs) exposed to increasing concentrations of a mixture of six micropollutants (ibuprofen, diclofenac, enalapril, caffeine, atenolol, paracetamol). Key players of biodegradation were identified using a combinatorial approach of 16S rRNA sequencing and analytics. Microbial community structure changed with increasing pharmaceutical intake (from 1 to 100 mg/L) and reached a steady-state during incubation for 7 weeks on 100 mg/L. HPLC analysis revealed a fluctuating but significant degradation (30–100%) of five pollutants (caffeine, paracetamol, ibuprofen, atenolol, enalapril) by an established and stable microbial community mainly composed of Achromobacter, Cupriavidus, Pseudomonas and Leucobacter. By using the microbial community from MBR1 as inoculum for further batch culture experiments on single micropollutants (400 mg/L substrate, respectively), different active microbial consortia were obtained for each single micropollutant. Microbial genera potentially responsible for degradation of the respective micropollutant were identified, i.e. Pseudomonas sp. and Sphingobacterium sp. for ibuprofen, caffeine and paracetamol, Sphingomonas sp. for atenolol and Klebsiella sp. for enalapril. Our study demonstrates the feasibility of cultivating stable microbial communities capable of degrading simultaneously a mixture of highly concentrated pharmaceuticals in lab-scale MBRs and the identification of microbial genera potentially responsible for the degradation of specific pollutants. Key points • Multiple pharmaceuticals were removed by stable microbial communities. • Microbial key players of five main pharmaceuticals were identified.
Keywords
Project
Event
Exhibition start date
Exhibition end date
Conference start date
Conference end date
Date of the last check
ISBN
ISSN
0175-7598
1432-0614
Language
English
Created during FHNW affiliation
Yes
Strategic action fields FHNW
Publication status
Published
Review
Peer review of the complete publication
Open access category
Hybrid
License
'https://creativecommons.org/licenses/by/4.0/'
Citation
Suleiman, M., Demaria, F., Zimmardi, C., Kolvenbach, B., & Corvini, P. (2023). Analyzing microbial communities and their biodegradation of multiple pharmaceuticals in membrane bioreactors. Applied Microbiology and Biotechnology, 107, 5545–5554. https://doi.org/10.1007/s00253-023-12677-z