A compact vocabulary of paratope-epitope interactions enables predictability of antibody-antigen binding

dc.accessRightsAnonymous*
dc.contributor.authorMiho, Enkelejda
dc.contributor.authorAkbar, Rahmad
dc.contributor.authorPavlovic, Milena
dc.contributor.authorSnapkov, Igor
dc.contributor.authorSlabodkin, Andrei
dc.contributor.authorScheffer, Lonneke
dc.contributor.authorHaff, Ingrid Hobaed
dc.contributor.authorTryslew Haug, Dag Trygve
dc.contributor.authorLund-Johanson, Fridtjof
dc.contributor.authorSafonova, Yana
dc.contributor.authorGreiff, Victor
dc.contributor.authorRobert, Philippe
dc.contributor.authorJeliazkov, Jeliazko
dc.contributor.authorWeber, Cedric
dc.contributor.authorSandve, Geir
dc.date.accessioned2022-02-18T14:35:40Z
dc.date.available2022-02-18T14:35:40Z
dc.date.issued2021-03-16
dc.description.abstractAntibody-antigen binding relies on the specific interaction of amino acids at the paratope-epitope interface. The predictability of antibody-antigen binding is a prerequisite for de novo antibody and (neo-)epitope design. A fundamental premise for the predictability of antibody-antigen binding is the existence of paratope-epitope interaction motifs that are universally shared among antibody-antigen structures. In a dataset of non-redundant antibody-antigen structures, we identify structural interaction motifs, which together compose a commonly shared structure-based vocabulary of paratope-epitope interactions. We show that this vocabulary enables the machine learnability of antibody-antigen binding on the paratope-epitope level using generative machine learning. The vocabulary (1) is compact, less than 104 motifs; (2) distinct from non-immune protein-protein interactions; and (3) mediates specific oligo- and polyreactive interactions between paratope-epitope pairs. Our work leverages combined structure- and sequence-based learning to demonstrate that machine-learning-driven predictive paratope and epitope engineering is feasible.en_US
dc.identifier.doi10.1016/j.celrep.2021.108856
dc.identifier.issn2639-1856
dc.identifier.issn2211-1247
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/33315
dc.identifier.urihttps://doi.org/10.26041/fhnw-4106
dc.issue11en_US
dc.language.isoenen_US
dc.publisherCell Pressen_US
dc.relation.ispartofCell Reportsen_US
dc.rightsAttribution-NonCommercial 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/us/en_US
dc.spatialCambridgeen_US
dc.subjectantibodyen_US
dc.subjectantigenen_US
dc.subjectparatopeen_US
dc.subjectepitopeen_US
dc.subjectstructureen_US
dc.subjectpredictionen_US
dc.subjectdeep learningen_US
dc.subjectmachine learningen_US
dc.titleA compact vocabulary of paratope-epitope interactions enables predictability of antibody-antigen bindingen_US
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volume34en_US
dspace.entity.typePublication
fhnw.InventedHereYesen_US
fhnw.IsStudentsWorknoen_US
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publicationen_US
fhnw.affiliation.hochschuleHochschule für Life Sciencesde_CH
fhnw.affiliation.institutInstitut für Medizintechnik und Medizininformatikde_CH
fhnw.openAccessCategoryGolden_US
fhnw.pagination1-21en_US
fhnw.publicationStatePublisheden_US
relation.isAuthorOfPublication30aa6b4f-8d02-4f33-8551-6261e7383b23
relation.isAuthorOfPublication.latestForDiscovery30aa6b4f-8d02-4f33-8551-6261e7383b23
Dateien
Originalbündel
Gerade angezeigt 1 - 1 von 1
Lade...
Vorschaubild
Name:
1-s2.0-S2211124721001704-main.pdf
Größe:
5.55 MB
Format:
Adobe Portable Document Format
Beschreibung: