A compact vocabulary of paratope-epitope interactions enables predictability of antibody-antigen binding
dc.accessRights | Anonymous | * |
dc.contributor.author | Miho, Enkelejda | |
dc.contributor.author | Akbar, Rahmad | |
dc.contributor.author | Pavlovic, Milena | |
dc.contributor.author | Snapkov, Igor | |
dc.contributor.author | Slabodkin, Andrei | |
dc.contributor.author | Scheffer, Lonneke | |
dc.contributor.author | Haff, Ingrid Hobaed | |
dc.contributor.author | Tryslew Haug, Dag Trygve | |
dc.contributor.author | Lund-Johanson, Fridtjof | |
dc.contributor.author | Safonova, Yana | |
dc.contributor.author | Greiff, Victor | |
dc.contributor.author | Robert, Philippe | |
dc.contributor.author | Jeliazkov, Jeliazko | |
dc.contributor.author | Weber, Cedric | |
dc.contributor.author | Sandve, Geir | |
dc.date.accessioned | 2022-02-18T14:35:40Z | |
dc.date.available | 2022-02-18T14:35:40Z | |
dc.date.issued | 2021-03-16 | |
dc.description.abstract | Antibody-antigen binding relies on the specific interaction of amino acids at the paratope-epitope interface. The predictability of antibody-antigen binding is a prerequisite for de novo antibody and (neo-)epitope design. A fundamental premise for the predictability of antibody-antigen binding is the existence of paratope-epitope interaction motifs that are universally shared among antibody-antigen structures. In a dataset of non-redundant antibody-antigen structures, we identify structural interaction motifs, which together compose a commonly shared structure-based vocabulary of paratope-epitope interactions. We show that this vocabulary enables the machine learnability of antibody-antigen binding on the paratope-epitope level using generative machine learning. The vocabulary (1) is compact, less than 104 motifs; (2) distinct from non-immune protein-protein interactions; and (3) mediates specific oligo- and polyreactive interactions between paratope-epitope pairs. Our work leverages combined structure- and sequence-based learning to demonstrate that machine-learning-driven predictive paratope and epitope engineering is feasible. | en_US |
dc.identifier.doi | 10.1016/j.celrep.2021.108856 | |
dc.identifier.issn | 2639-1856 | |
dc.identifier.issn | 2211-1247 | |
dc.identifier.uri | https://irf.fhnw.ch/handle/11654/33315 | |
dc.identifier.uri | https://doi.org/10.26041/fhnw-4106 | |
dc.issue | 11 | en_US |
dc.language.iso | en | en_US |
dc.publisher | Cell Press | en_US |
dc.relation.ispartof | Cell Reports | en_US |
dc.rights | Attribution-NonCommercial 3.0 United States | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/3.0/us/ | en_US |
dc.spatial | Cambridge | en_US |
dc.subject | antibody | en_US |
dc.subject | antigen | en_US |
dc.subject | paratope | en_US |
dc.subject | epitope | en_US |
dc.subject | structure | en_US |
dc.subject | prediction | en_US |
dc.subject | deep learning | en_US |
dc.subject | machine learning | en_US |
dc.title | A compact vocabulary of paratope-epitope interactions enables predictability of antibody-antigen binding | en_US |
dc.type | 01A - Beitrag in wissenschaftlicher Zeitschrift | |
dc.volume | 34 | en_US |
dspace.entity.type | Publication | |
fhnw.InventedHere | Yes | en_US |
fhnw.IsStudentsWork | no | en_US |
fhnw.ReviewType | Anonymous ex ante peer review of a complete publication | en_US |
fhnw.affiliation.hochschule | Hochschule für Life Sciences FHNW | de_CH |
fhnw.affiliation.institut | Institut für Medizintechnik und Medizininformatik | de_CH |
fhnw.openAccessCategory | Gold | en_US |
fhnw.pagination | 1-21 | en_US |
fhnw.publicationState | Published | en_US |
relation.isAuthorOfPublication | 30aa6b4f-8d02-4f33-8551-6261e7383b23 | |
relation.isAuthorOfPublication.latestForDiscovery | 30aa6b4f-8d02-4f33-8551-6261e7383b23 |
Dateien
Originalbündel
1 - 1 von 1
- Name:
- 1-s2.0-S2211124721001704-main.pdf
- Größe:
- 5.55 MB
- Format:
- Adobe Portable Document Format
- Beschreibung: