Long-term visual localization in large scale urban environments exploiting street level imagery

dc.contributor.authorMeyer, Jonas
dc.contributor.authorRettenmund, Daniel
dc.contributor.authorNebiker, Stephan
dc.date.accessioned2024-07-10T05:59:34Z
dc.date.available2024-07-10T05:59:34Z
dc.date.issued2020
dc.description.abstractIn this paper, we present our approach for robust long-term visual localization in large scale urban environments exploiting street level imagery. Our approach consists of a 2D-image based localization using image retrieval (NetVLAD) to select reference images. This is followed by a 3D-structure based localization with a robust image matcher (DenseSfM) for accurate pose estimation. This visual localization approach is evaluated by means of the ‘Sun’ subset of the RobotCar seasons dataset, which is part of the Visual Localization benchmark. As the results on the RobotCar benchmark dataset are nearly on par with the top ranked approaches, we focused our investigations on reproducibility and performance with own data. For this purpose, we created a dataset with street-level imagery. In order to have independent reference and query images, we used a road-based and a tram-based mapping campaign with a time difference of four years. The approximately 90% successfully oriented images of both datasets are a good indicator for the robustness of our approach. With about 50% success rate, every second image could be localized with a position accuracy better than 0.25 m and a rotation accuracy better than 2°.
dc.identifier.doi10.5194/isprs-annals-v-2-2020-57-2020
dc.identifier.issn2194-9050
dc.identifier.issn2194-9042
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/46410
dc.identifier.urihttps://doi.org/10.26041/fhnw-9510
dc.language.isoen
dc.publisherCopernicus
dc.relation.ispartofISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectUbiquitous positioning
dc.subjectVisual localization
dc.subjectImage-based localization
dc.subjectLong-term matching
dc.subjectImage orientation
dc.subjectPose estimation
dc.subjectBenchmark
dc.subjectGeoreferencing
dc.subject.ddc600 - Technik, Medizin, angewandte Wissenschaften
dc.titleLong-term visual localization in large scale urban environments exploiting street level imagery
dc.type01A - Beitrag in wissenschaftlicher Zeitschrift
dc.volumeV-2-2020
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Architektur, Bau und Geomatik FHNWde_CH
fhnw.affiliation.institutInstitut Geomatikde_CH
fhnw.openAccessCategoryGold
fhnw.publicationStatePublished
relation.isAuthorOfPublicationfbeb87dd-a384-4d52-bbd9-f84a6b5c48ed
relation.isAuthorOfPublication6287a52e-8012-4ba7-b1a2-aa65ec5080c8
relation.isAuthorOfPublicationd4405bdc-e966-4962-9c93-9b06879a4a41
relation.isAuthorOfPublication.latestForDiscoveryd4405bdc-e966-4962-9c93-9b06879a4a41
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
isprs-annals-V-2-2020-57-2020.pdf
Größe:
2.48 MB
Format:
Adobe Portable Document Format

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: