Classification of brand images using convolutional neural networks

dc.contributor.authorRuf, Yesim
dc.contributor.authorHanne, Thomas
dc.contributor.authorDornberger, Rolf
dc.contributor.editorAbraham, Ajith
dc.contributor.editorHanne, Thomas
dc.contributor.editorGandhi, Niketa
dc.contributor.editorMishra, Pooja Manghirmalani
dc.contributor.editorBajaj, Anu
dc.contributor.editorSiarry, Patrick
dc.date.accessioned2025-03-13T07:43:44Z
dc.date.issued2023
dc.description.abstractThis paper investigates the classification of brand images using convolutional neural networks. Traditionally, the images must be manually named, classified, and tagged, which is a laborious and time-consuming task. Nowadays, these processes can be addressed with the help of computer vision for brand classification. An approach to create a Convolutional Neural Network (CNN) model with a high accuracy is proposed and discussed, in which the images in the classification process are automatically tagged with the predicted class name.
dc.description.urihttps://mirlabs.org/socpar22/
dc.event14th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2022)
dc.event.end2022-12-16
dc.event.start2022-12-14
dc.identifier.doihttps://doi.org/10.1007/978-3-031-27524-1_50
dc.identifier.isbn978-3-031-27523-4
dc.identifier.isbn978-3-031-27524-1
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/48188
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofProceedings of the 14th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2022)
dc.relation.ispartofseriesLecture Notes in Networks and Systems
dc.spatialCham
dc.subject.ddc330 - Wirtschaft
dc.titleClassification of brand images using convolutional neural networks
dc.type04B - Beitrag Konferenzschrift
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.openAccessCategoryClosed
fhnw.pagination528–539
fhnw.publicationStatePublished
fhnw.seriesNumber648
relation.isAuthorOfPublication37e52b03-aafc-4cf6-9707-de8a4f7ecc91
relation.isAuthorOfPublication35d8348b-4dae-448a-af2a-4c5a4504da04
relation.isAuthorOfPublication64196f63-c326-4e10-935d-6776cc91354c
relation.isAuthorOfPublication.latestForDiscovery35d8348b-4dae-448a-af2a-4c5a4504da04
relation.isEditorOfPublication35d8348b-4dae-448a-af2a-4c5a4504da04
relation.isEditorOfPublication.latestForDiscovery35d8348b-4dae-448a-af2a-4c5a4504da04
Dateien

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
2.66 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: