Classification of brand images using convolutional neural networks
| dc.contributor.author | Ruf, Yesim | |
| dc.contributor.author | Hanne, Thomas | |
| dc.contributor.author | Dornberger, Rolf | |
| dc.contributor.editor | Abraham, Ajith | |
| dc.contributor.editor | Hanne, Thomas | |
| dc.contributor.editor | Gandhi, Niketa | |
| dc.contributor.editor | Mishra, Pooja Manghirmalani | |
| dc.contributor.editor | Bajaj, Anu | |
| dc.contributor.editor | Siarry, Patrick | |
| dc.date.accessioned | 2025-03-13T07:43:44Z | |
| dc.date.issued | 2023 | |
| dc.description.abstract | This paper investigates the classification of brand images using convolutional neural networks. Traditionally, the images must be manually named, classified, and tagged, which is a laborious and time-consuming task. Nowadays, these processes can be addressed with the help of computer vision for brand classification. An approach to create a Convolutional Neural Network (CNN) model with a high accuracy is proposed and discussed, in which the images in the classification process are automatically tagged with the predicted class name. | |
| dc.description.uri | https://mirlabs.org/socpar22/ | |
| dc.event | 14th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2022) | |
| dc.event.end | 2022-12-16 | |
| dc.event.start | 2022-12-14 | |
| dc.identifier.doi | https://doi.org/10.1007/978-3-031-27524-1_50 | |
| dc.identifier.isbn | 978-3-031-27523-4 | |
| dc.identifier.isbn | 978-3-031-27524-1 | |
| dc.identifier.uri | https://irf.fhnw.ch/handle/11654/48188 | |
| dc.language.iso | en | |
| dc.publisher | Springer | |
| dc.relation.ispartof | Proceedings of the 14th International Conference on Soft Computing and Pattern Recognition (SoCPaR 2022) | |
| dc.relation.ispartofseries | Lecture Notes in Networks and Systems | |
| dc.spatial | Cham | |
| dc.subject.ddc | 330 - Wirtschaft | |
| dc.title | Classification of brand images using convolutional neural networks | |
| dc.type | 04B - Beitrag Konferenzschrift | |
| dspace.entity.type | Publication | |
| fhnw.InventedHere | Yes | |
| fhnw.ReviewType | Anonymous ex ante peer review of a complete publication | |
| fhnw.affiliation.hochschule | Hochschule für Wirtschaft FHNW | de_CH |
| fhnw.affiliation.institut | Institut für Wirtschaftsinformatik | de_CH |
| fhnw.openAccessCategory | Closed | |
| fhnw.pagination | 528–539 | |
| fhnw.publicationState | Published | |
| fhnw.seriesNumber | 648 | |
| relation.isAuthorOfPublication | 37e52b03-aafc-4cf6-9707-de8a4f7ecc91 | |
| relation.isAuthorOfPublication | 35d8348b-4dae-448a-af2a-4c5a4504da04 | |
| relation.isAuthorOfPublication | 64196f63-c326-4e10-935d-6776cc91354c | |
| relation.isAuthorOfPublication.latestForDiscovery | 35d8348b-4dae-448a-af2a-4c5a4504da04 | |
| relation.isEditorOfPublication | 35d8348b-4dae-448a-af2a-4c5a4504da04 | |
| relation.isEditorOfPublication.latestForDiscovery | 35d8348b-4dae-448a-af2a-4c5a4504da04 |
Dateien
Lizenzbündel
1 - 1 von 1
Lade...
- Name:
- license.txt
- Größe:
- 2.66 KB
- Format:
- Item-specific license agreed upon to submission
- Beschreibung: