Impact of prosumers on the accuracy of load forecast with neural networks

dc.contributor.authorMuff, Roswitha
dc.contributor.authorWache, Holger
dc.date.accessioned2024-04-24T06:13:35Z
dc.date.available2024-04-24T06:13:35Z
dc.date.issued2020
dc.description.abstractMore and more prosumers will penetrate the power grid. But how do prosumers affect the accuracy of the day-ahead load forecast? In contrast to related research on prosumers and load forecast, this paper addresses the impact of different shares of prosumers on the load forecast for areas with several households. In order to answer this research question, the load forecast accuracies for a dataset without prosumers is compared to the ones of datasets with different shares of prosumers in an experimental setup using neural networks. A sliding window approach with lagged values up to seven days is applied. Apart from electricity consumption data weather and date data are considered. The conducted tests show, that the mean absolute percentage error increases from about 8% for a dataset without prosumers up to about 39% for a dataset with a share of prosumers of 80%. It can therefore be concluded that prosumers decrease the accuracy of the day-ahead load forecast with neural networks.
dc.eventEnergy Informatics 2020
dc.event.end2020-10-30
dc.event.start2020-10-29
dc.identifier.doihttps://doi.org/10.1186/s42162-020-00113-9
dc.identifier.urihttps://irf.fhnw.ch/handle/11654/42956
dc.identifier.urihttps://doi.org/10.26041/fhnw-6921
dc.language.isoen
dc.relation.ispartofAbstracts from the 9th DACH+ Conference on Energy Informatics
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.spatialSierre
dc.subject.ddc330 - Wirtschaft
dc.titleImpact of prosumers on the accuracy of load forecast with neural networks
dc.type04B - Beitrag Konferenzschrift
dc.volume3
dspace.entity.typePublication
fhnw.InventedHereYes
fhnw.ReviewTypeAnonymous ex ante peer review of a complete publication
fhnw.affiliation.hochschuleHochschule für Wirtschaft FHNWde_CH
fhnw.affiliation.institutInstitut für Wirtschaftsinformatikde_CH
fhnw.openAccessCategoryGold
fhnw.pagination8-10
fhnw.publicationStatePublished
relation.isAuthorOfPublicationa299dc0c-5269-4d8c-8d22-4db91a922e29
relation.isAuthorOfPublication9a5348f4-47b3-437d-a1f9-7cf66011e883
relation.isAuthorOfPublication.latestForDiscovery9a5348f4-47b3-437d-a1f9-7cf66011e883
Dateien

Originalbündel

Gerade angezeigt 1 - 1 von 1
Vorschaubild
Name:
2020_Abstracts_from_the_9th_DACH_Conference_on_energy_informatics.pdf
Größe:
1.83 MB
Format:
Adobe Portable Document Format

Lizenzbündel

Gerade angezeigt 1 - 1 von 1
Kein Vorschaubild vorhanden
Name:
license.txt
Größe:
1.36 KB
Format:
Item-specific license agreed upon to submission
Beschreibung: