Remaining Useful Life Estimation by Image Recognition

No Thumbnail Available
Author (Corporation)
Publication date
2021
Typ of student thesis
Master
Course of study
Type
11 - Student thesis
Editors
Editor (Corporation)
Supervisor
Parent work
Special issue
DOI of the original publication
Link
Series
Series number
Volume
Issue / Number
Pages / Duration
Patent number
Publisher / Publishing institution
Hochschule für Wirtschaft FHNW
Place of publication / Event location
Olten
Edition
Version
Programming language
Assignee
Practice partner / Client
Abstract
Many methods for estimating remaining useful life (RUL) for predictive maintenance rely on sensor data. In environments where sensors might be economically unviable the condition of a machine or its parts is often assessed visually. Wear-and-tear is difficult to quantify and therefore makes it challenging to build statistical models for RUL estimation. This study investigates whether accuracy in RUL estimation models of wear-and-tear parts can be improved using inspection pictures and artificial neural networks. Using a combined approach of design science research and a case study, RUL estimation models for bearings of ABB turbochargers were evaluated. First, a benchmark model was built that relies only on historical data of turbocharger inspections in tabular form. Then this model was concatenated with various convolutional neural networks such as ResNet50 trained on images of the same inspections. The analysis shows that this concatenating leads to a reduction of the mean absolute error in RUL prediction by up to 18.4%. I conclude that using convolutional neural networks and inspection pictures improves the overall RUL estimation for wear-and-tear parts.
Keywords
Subject (DDC)
330 - Wirtschaft
Project
Event
Exhibition start date
Exhibition end date
Conference start date
Conference end date
Date of the last check
ISBN
ISSN
Language
English
Created during FHNW affiliation
Yes
Strategic action fields FHNW
Publication status
Review
Open access category
License
Citation
PROBST, Thomas, 2021. Remaining Useful Life Estimation by Image Recognition. Olten: Hochschule für Wirtschaft FHNW. Verfügbar unter: https://irf.fhnw.ch/handle/11654/48606